[1]Jackson I M, Scott P J H, Thompson S. Clinical applications of radiolabeled peptides for PET[J]. Seminars in Nuclear Medicine, 2017, 47(5): 493-523.
[2]Riola-Parada C, Garcia-Canamaque L, Perez-Duenas V, et al. Simultaneous PET/MRI vs PET/CT in oncology. A systematic review[J]. Revista Española de Medicina Nuclear e Imagen Molecular, 2016, 35(5): 306-312.
[3]Follacchio G A, De Feo M S, De Vincentis G, et al. Radiopharmaceuticals labelled with copper radionuclides: Clinical results in human beings[J]. Current Radiopharmaceuticals, 2018, 11(1): 22-33.
[4]Boschi A, Martini P, Janevik-Ivanovska E, et al. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics[J]. Drug Discovery Today, 2018, 23(8): 1489-1501.
[5]Evangelista L, Luigi M, Cascini G L. New issues for copper-64: From precursor to innovative PET tracers in clinical oncology[J]. Current Radiopharmaceuticals, 2013, 6(3): 117-123.
[6]Brandt M, Cardinale J, Aulsebrook M L, et al. An overview of PET radiochemistry, Part 2: radiometals[J]. The Journal of Nuclear Medicine, 2018, 59(10): 1500-1506.
[7]Jalilian A R, Jr J O. The current status and future of theranostic Copper-64 radiopharmaceuticals[J]. Iranian Journal of Nuclear Medicine, 2017, 25(1): 1-10.
[8]Mcmillan D D, Maeda J, Bell J J, et al. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission[J]. Journal of Radiation Research, 2015, 56(5): 784-791.
[9]陈文,魏洪源,周志军,等. 金属正电子核素64Cu,68Ga,86Y和89Zr的PET标记药物研究进展[J]. 同位素,2017,30(1):78-88.Chen Wen, Wei Hongyuan, Zhou Zhijun, et al. Positron emission radiometals 64Cu, 68Ga, 86Y and 89Zr labeled PET drugs[J]. Journal of Isotopes, 2017, 30(1): 78-88(in Chinese).
[10]孙夕林,闫龙天,王凯,等. 医用回旋加速器的64Cu高效制备[J]. 现代生物医学进展,2016,16(19):3783-3787.Sun Xilin, Yan Yan, Wang Kai, et al. Medical cyclotron production of 64Cu[J]. Progress in Modern Biomedicine, 2016, 16(19): 3783-3787(in Chinese).
[11]沈亦佳,陈玉清,梁积新,等. 电沉积法制备加速器生产64Cu的镍靶[J]. 同位素,2013,26(1):38-41.Shen Yijia, Chen Yuqing, Liang Jixing, et al. Preparation of Ni target for cyclotron-produced 64Cu by electrodeposition[J]. Journal of Isotopes, 2013, 26(1): 38-41(in Chinese).
[12]马磊,刘宇,柴之芳. 64Cu放射性药物化学[J]. 化学进展,2012(9):1720-1728.Ma Lei, Liu Yu, Chai Zhifang. 64Cu radiopharmaceutical chemistry[J]. Progress in chemistry, 2012(9): 1720-1728.
[13]Wadas T J, Wong E H, Weisman G R, et al. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease[J]. Chemical Reviews, 2010, 110(5): 2858-2902.
[14]Uri I, AvnielPolak S, Gross D J, et al. Update in the therapy of advanced neuroendocrine tumors[J]. Current Treatment Options in Oncology, 2017, 18(12): 72.
[15]崔璨,杨吉刚. 神经内分泌肿瘤的核医学影像诊断方法[J]. 临床和实验医学杂志,2014,13(22):1911-1915.Cui Can, Yang Jigang. Nuclear medicine imaging diagnosis method of neuroendocrine tumor[J]. Journal of Clinical and Experimental Medicine, 2014, 13(22): 1911-1915(in Chinese).
[16]Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: First-in-humans study[J]. The Journal of Nuclear Medicine, 2012, 53(8): 1207-1215.
[17]Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for neuroendocrine tumors: A prospective Head-to-Head comparison with 111In-DTPA-Octreotide in 112 patients[J]. The Journal of Nuclear Medicine, 2015, 56(6): 847-854.
[18]Johnbeck C B, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: A prospective study of 59 patients with neuroendocrine tumors[J]. The Journal of Nuclear Medicine, 2017, 58(3): 451-457.
[19]Carlsen E A, Johnbeck C B, Binderup T, et al. 64Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms[J]. The Journal of Nuclear Medicine, 2020: 119.240143(ahead of print).
[20]Paterson B M, Roselt P, Denoyer D, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate[J]. Dalton Transactions, 2014, 43(3): 1386-1396.
[21]Hicks R J, Jackson P, Kong G, et al. 64Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy[J]. The Journal of Nuclear Medicine, 2019, 60(6): 777-785.
[22]U.S. National Library of Medicine. ClinicalTrials.gov[DB/OL]. [2020-05-28]. https:∥clinicaltrials.gov/ct2/results?cond=&term=SARTATE&cntry=&state=&city=&dist=[Z].
[23]Clarity Pharmaceuticals. Clarity Pharmaceuticals Announces US FDA Grants 67Cu-SARTATE? Orphan Drug Designation for Neuroblastoma [EB/OL]. [2020-05-28]. https:∥www.claritypharmaceuticals.com/news/odd_status/.
[24]Clarity Pharmaceuticals. Clarity Pharmaceuticals announces US FDA grants 64Cu-SARTATE? Orphan Drug Designation for the clinical management of neuroblastoma[EB/OL]. [2020-05-28]. https:∥www.claritypharmaceuticals.com/news/odd_status-diagnostic/.
[25]Kinzler K W, Vogelstein B. Life (and death) in a malignant tumour[J]. Nature, 1996, 379(6 560): 19-20.
[26]Lewis J S, Welch M J. PET imaging of hypoxia[J]. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2001, 45(2): 183-188.
[27]Lewis J S, Connett J M, Garbow J R, et al. Copper-64-pyruvaldehyde-bis (N4-methylthiosemicarbazone) for the prevention of tumor growth at wound sites following laparoscopic surgery: Monitoring therapy response with microPET and magnetic resonance imaging[J]. Cancer Research, 2002, 62(2): 445-449.
[28]Grassi I, Nanni C, Cicoria G, et al. Usefulness of 64Cu-ATSM in head and neck cancer: A preliminary prospective study[J]. Clinical Nuclear Medicine, 2014, 39(1): e59-e63.
[29]Lopci E, Grassi I, Rubello D, et al. Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT[J]. Clinical Nuclear Medicine, 2016, 41(2): e87-e92.
[30]U.S. National Library of Medicine. ClinicalTrials.gov[DB/OL]. [2020-05-28]. https:∥clinicaltrials.gov/ct2/show/NCT03951337?term=ATSM&draw=2&rank=1[Z].
[31]U.S. National Library of Medicine. ClinicalTrials.gov[DB/OL]. [2020-05-28]. https:∥clinicaltrials.gov/ct2/show/NCT00794339?term=ATSM&draw=2&rank=4[Z].
[32]Ghosh A, Heston W D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer[J]. Journal of Cellular Biochemistry, 2004, 91(3): 528-539.
[33]Kinoshita Y, Kuratsukuri K, Landas S, et al. Expression of prostate-specific membrane antigen in normal and malignant human tissues[J]. World Journal of Surgery, 2006, 30(4): 628-636.
[34]Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy[J]. The Journal of Nuclear Medicine, 2015, 56(5): 668-674.
[35]Grubmüller B, Baum R P, Capasso E, et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: First in-human studies[J]. Cancer Biotherapy and Radiopharmaceuticals, 2016, 31(8): 277-286.
[36]Cantiello F, Gangemi V, Cascini G L, et al. Diagnostic accuracy of (64)Copper prostate-specific membrane antigen positron emission Tomography/Computed tomography for primary lymph node staging of intermediate- to high-risk prostate cancer: Our preliminary experience[J]. Urology, 2017, 106: 139-145.
[37]Avila-Rodriguez M A, Rios C, Carrasco-Hernandez J, et al. Biodistribution and radiation dosimetry of [64Cu]copper dichloride: First-in-human study in healthy volunteers[J]. EJNMMI Research, 2017, 7: 98.
[38]Piccardo A, Paparo F, Puntoni M, et al. 64CuCl2 PET/CT in prostate cancer relapse[J]. The Journal of Nuclear Medicine, 2018, 59(3): 444-451.
[39]Righi S, Ugolini M, Bottoni G, et al. Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: Possible theranostic implications[J]. EJNMMI Research, 2018, 8: 18.
[40]Shariat S F, Roehrborn C G, Mcconnell J D, et al. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis[J]. Journal of Clinical Oncology, 2007, 25(4): 349-355.
[41]Ganesh S, Sier C M, Heerding M, et al. Urokinase receptor and colorectal cancer survival[J]. The Lancet, 1994, 344(8919): 401-402.
[42]Persson M, Skovgaard D, Brandt-Larsen M, et al. First-in-human uPAR PET: Imaging of cancer aggressiveness[J]. Theranostics, 2015, 5(12): 1303-1316.
[43]U.S. National Library of Medicine. ClinicalTrials.gov[DB/OL]. [2020-05-28]. https:∥clinicaltrials.gov/ct2/show/NCT02139371?term=64Cu-DOTA-AE105&draw=2&rank=1[Z].
[44]Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-Positive breast cancer[J]. The Journal of Nuclear Medicine, 2013, 54(11): 1869-1875.
[45]Joanne E M, James R B, David M C, et al. Functional imaging of human epidermal. growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET[J]. The Journal of Nuclear Medicine, 2014, 55(1): 23-29.
[46]Mortimer J E, Bading J R, Park J M, et al. Tumor uptake of 64Cu-DOTA-trastuzumab in patients with metastatic breast cancer[J]. The Journal of Nuclear Medicine, 2018, 59(1): 38-43.
[47]U.S. National Library of Medicine. ClinicalTrials.gov[DB/OL]. [2020-05-28]. https:∥clinicaltrials.gov/ct2/show/NCT02827877?term=64Cu-DOTA-trastuzumab&draw=2&rank=3[Z]. |