[1]Katz A. Quality of life for men with prostate cancer[J]. Cancer Nursing, 2007, 30(4): 302-308.
[2]Ristau B T, O’Keefe D S, Bacich D J. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research[J]. Urologic Oncology, 2014, 32(3): 272-279.
[3]Pinto J T. Prostate-specific membrane antigen, a novel folate hydrolase in human prostate carcinoma cells[J]. Clin Cancer Res, 1996, 2(9): 1445-1451.
[4]Jozic D, Bourenkow G, Bartunik H, et al. Crystal structure of the dinuclear zinc aminopeptidase pepV from lactobacillus delbrueckii unravels its preference for dipeptides[J]. Structure (Cambridge), 2002, 10(8): 1097-1106.
[5]Barinka C, Rojas C, Slusher B, et al. Glutamate carboxypeptidase Ⅱ in diagnosis and treatment of neurologic disorders and prostate cancer[J]. Current Medicinal Chemistry, 2012, 19(6): 856-870.
[6]黄海,赖义明,何旺,等. PSMA对JNK/SAPK通路的激活及对前列腺癌细胞凋亡的调控[J]. 中国病理生理杂志,2014,30(5):785-791.Huang Hai, Lai Yiming, He Wang, et al. PSMA activates JNK/SAPK pathway and regulates apoptosis of prostate cancer cells[J]. Chinese Journal of Pathophysiology, 2014, 30(5): 785-791(in Chinese).
[7]Rybalov M, Ananias H, Hoving H, et al. PSMA, EpCAM, VEGF and GRPR as imaging targets in locally recurrent prostate cancer after radiotherapy[J]. International Journal of Molecular Sciences,2014, 15(4): 6046-6061.
[8]Ananias H J K, Van d H M C, Helfrich W, et al. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer[J]. Prostate, 2010, 69(10): 1101-1108.
[9]Samplaski M K, Heston W, Elson P, et al. Folate hydrolase (prostate-specific antigen) 1 expression in bladder cancer subtypes and associated tumor neovasculature[J]. Modern Pathology, 2011, 24(11): 1531-1531.
[10]Horoszewicz J S, Kawinski E, Murphy G P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients[J]. Anticancer Research, 1987, 7(5B): 927-935.
[11]Eleni G, Gjermund H. Metal-based PSMA radioligands[J]. Molecules, 2017, 22(4): 523-556.
[12]Bouchelouche K, Choyke P L, Capala J. Prostate specific membrane antigen-a target for imaging and therapy with radionuclides[J]. Discovery Medicine, 2010, 9(44): 55-61.
[13]Troyer J K, Feng Q, Beckett M L, et al. Biochemical characterization and mapping of the 7E11-C5.3 epitope of the prostate-specific membrane antigen[J]. Urologic Oncology Seminars & Original Investigations, 1995, 1(1): 1-37.
[14]Sodee D B, Ellis R J, Samuels M A, et al. Prostate cancer and prostate bed SPECT imaging with ProstaScint: semiquantitative correlation with prostatic biopsy results[J]. Prostate, 2015, 37(3): 140-148.
[15]Franc B L, Cho S Y, Rosenthal S A, et al. Detection and localization of carcinoma within the prostate using high resolution transrectal gamma imaging (TRGI) of monoclonal antibody directed at prostate specific membrane antigen (PSMA)-Proof of concept and initial imaging results[J]. European Journal of Radiology,2013, 82(11): 1877-1884.
[16]Smithjones P M, Vallabahajosula S, Goldsmith S J, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen[J]. Cancer Research, 2000, 60(18): 5237-5243.
[17]Nargund V, Al H D, Kumar P, et al. Imaging with radiolabelled monoclonal antibody (MUJ591) to prostate-specific membrane antigen in staging of clinically localized prostatic carcinoma: comparison with clinical, surgical and histological staging[J]. Bju International, 2015, 95(9): 1232-1236.
[18]Pandit-Taskar N, O"Donoghue J A, Morris M J, et al. Antibody mass escalation study in patients with castration-resistant prostate cancer using 111In-J591: lesion detectability and dosimetric projections for 90Y radioimmunotherapy[J]. Journal of Nuclear Medicine, 2008, 49(7): 1066-1074.
[19]Goldsmith S J, Bander N H, Nanus D M, et al. Radioimmunotherapy of metastatic prostate cancer with ;177Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody[J]. Current Radiopharmaceuticals, 2016, 9(1): 44-53.
[20]Tagawa S T, Milowsky M I, Morris M, et al. Phase Ⅱ study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer[J]. Clinical Cancer Research, 2013, 19(18): 5182-5191.
[21]Kitajima K, Murphy R C, Nathan M A. Choline PET/CT for imaging prostate cancer: an update[J]. Annals of Nuclear Medicine, 2013, 27(7): 581-591.
[22]Umbehr M H, Müntener M, Hany T, et al. The role of 11C-choline and 18F-Fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis[J]. European Urology, 2013, 64(1): 106-117.
[23]Bauman G, Belhocine T, Kovacs M, et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature[J]. Prostate Cancer and Prostatic Diseases, 2012, 15(1): 45-55.
[24]Spieth M E, Kasner D L. A tabulated summary of the FDG PET literature[J]. Journal of Nuclear Medicine, 2002, 43(3): 441.
[25]Mease R C, Dusich C L, Foss C A, et al. N-[N-[(S)-1,3-Dicarboxypropyl]Carbamoyl]-4-[18F] Fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer[J]. Clinical Cancer Research, 2008, 14(10): 3036-3043.
[26]Cho S Y, Gage K L, Mease R C, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer[J]. Journal of Nuclear Medicine, 2012, 53(12): 1883-1891.
[27]Rowe S P, Macura K J, Ciarallo A, et al. Comparison of prostate-specific membrane antigen based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-na ve and castration-resistant metastatic prostate cancer[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2016, 57(1): 46-53.
[28]Chen Y, Pullambhatla M, Foss C A, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer[J]. Clinical Cancer Research, 2011, 17(24): 7645-7653.
[29]Szabo Z, Mena E, Rowe S P, et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer[J]. Molecular Imaging and Biology, 2015, 17(4): 565-574.
[30]Cardinale J, Schafer M, Benesova M, et al. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging[J]. Journal of Nuclear Medicine, 2017, 58(3): 425-431.
[31]Giesel F L, Cardinale J, Schafer M, et al. 18F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA617[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43(10): 1929-1930.
[32]Kelly J, Amor-Coarasa A, Nikolopoulou A, et al. Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(4): 647-661.
[33]Ganguly T, Dannoon S, Hopkins M R, et al. A high affinity [18F] labeled phosphoramidate peptidomimetic PSMA-targeted inhibitor for PET imaging of prostate cancer[J]. Nuclear Medicine & Biology, 2015, 42(10): 780-787.
[34]Liu S, Edwards D S. 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals[J]. Chemical Reviews, 1999, 99(9): 2235-2268.
[35]Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 1999, 40(10): 1623-1629.
[36]Nedrow-Byers J R, Jabbes M, Jewett C, et al. A phosphoramidate-based prostate-specific membrane antigen-targeted SPECT agent[J]. The Prostate, 2012, 72(8): 904-912.
[37]Xu X, Zhang J, Hu S, et al. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen[J]. Nuclear Medicine and Biology, 2017, 48: 69-75.
[38]Hillier S M, Maresca K P, Lu G, et al. 99mTc-Labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer[J]. Journal of Nuclear Medicine, 2013, 54(8): 1369-1376.
[39]Kularatne S A, Zhou Z, Yang J, et al. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted 99mTc-radioimaging agents[J]. Molecular Pharmaceutics, 2009, 6(3): 790-800.
[40]Maresca K, Hillier S, Femia F, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer[J]. Journal of Medicinal Chemistry, 2009, 52(2): 347-357.
[41]Hillier S M, Maresca K P, Femia F J, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer[J]. Cancer Research, 2009, 69(17): 6932-6940.
[42]Barrett J A, Coleman R E, Goldsmith S J, et al. First-in-man evaluation of 2 high-affinity PSMA-Avid small molecules for imaging prostate cancer[J]. Journal of Nuclear Medicine, 2013, 54(3): 380-387.
[43]Reubi J C, Maecke H R. Peptide-based probes for cancer imaging[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2008, 49(11): 1735-1738.
[44]Eder M, Schafer M, Bauder-Wust U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging[J]. Bioconjug Chem, 2012, 23(4): 688-697.
[45]Eder M,Neels O,Miriam M,et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer[J]. Pharmaceuticals, 2014, 7(7): 779-796.
[46]Afshar-Oromieh A, Zechmann C M, Malcher A, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(1): 11-20.
[47]Afshar-Oromieh A, Avtzi E, Giesel F L, et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42(2): 197-209.
[48]Krohn T, Verburg F A, Pufe T, et al. [68Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42(2): 210-214.
[49]Zha Z, Ploessl K, Choi S R, et al. Synthesis and evaluation of a novel urea-based 68Ga-complex for imaging PSMA binding in tumor[J]. Nuclear Medicine and Biology, 2018, 59: 36-47.
[50]Banerjee S R, Pullambhatla M, Byun Y, et al. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer[J]. Journal of Medicinal Chemistry, 2010, 53(14): 5333-5341.
[51]Weineisen M, Simecek J, Schottelius M, et al. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer[J]. EJNMMI Research, 2014, 4(1): 63.
[52]Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies[J]. Journal of Nuclear Medicine, 2015, 56(8): 1169-1176.
[53]Herrmann K, Bluemel C, Weineisen M, et al. Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(6): 855-861.
[54]Benesova M, Schafer M, Bauder-Wust U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(6): 914-920.
[55]Afsharoromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(11): 1697-1705.
[56]Kassis A I. Therapeutic radionuclides: biophysical and radiobiologic principles[J]. Seminars in Nuclear Medicine, 2008, 38(5): 358-366.
[57]Cimadamore A, Cheng M, Santoni M, et al. New prostate cancer targets for diagnosis, imaging, and therapy: focus on prostatespecific membrane antigen[J]. Frontiers in Oncology, 2018, 8: 653-663.
[58]Yadav M P, Ballal S, Tripathi M, et al. 177Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2016, 44(1): 1-11.
[59]Hofman M S, Violet J, Hicks R J, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study[J]. Lancet Oncology, 2018, 19(6): 825-833.
[60]Zechmann C M, Afshar-Oromieh A, Armor T, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(7): 1280-1292. |