[1]Torre L A, Bray F, Siegel R L, et al. Global cancer statistics, 2012[J]. Ca-a Cancer Journal for Clinicians, 2015, 65(2): 87-108.
[2]Meric-Bernstam F, Hung M C. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy[J]. Clinical Cancer Research, 2006, 12(21): 6326-6330.
[3]Tagliabue E, Balsari A, Campiglio M, et al. HER2 as a target for breast cancer therapy[J]. Expert Opinion on Biological Therapy, 2010, 10(5): 711-724.
[4]Metro G, Mottolese M, Fabi A. HER-2-positive metastatic breast cancer: trastuzumab and beyond[J]. Expert Opinion on Pharmacotherapy, 2008, 9(15): 2583-2601.
[5]Fabi A, Di Benedetto A, Metro G, et al. HER2 protein and gene variation between primary and metastatic breast cancer: significance and impact on patient care[J]. Clinical Cancer Research, 2011, 17(7): 2055-2064.
[6]Mathenge E G, Dean C A, Clements D, et al. et al. Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model[J]. Neoplasia, 2014, 16(11): 950-960.
[7]Zidan J, Dashkovsky I, Stayerman C, et al. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease[J]. British Journal of Cancer, 2006, 17(2): 552-556.
[8]Gebhart G, Flamen P, De Vries E G, et al. Imaging diagnostic and therapeutic targets: human epidermal growth factor receptor 2[J]. Journal of Nuclear Medicine, 2016, 57(Suppl.1): 81S-88S.
[9]Haruka Y, Makoto T, Kazuhide H, et al. Dual-labeled near-infrared/99mTc imaging probes using PAMAM-coated silica nanoparticles for the imaging of HER2-expressing cancer cells[J]. International Journal of Molecular Sciences, 2016, 17(7): 1086.
[10]Pectasides D, Gaglia A, Arapantoni-Dadioti P, et al. HER-2/neu status of primary breast cancer and corresponding metastatic sites in patients with advanced breast cancer treated with trastuzumab-based therapy[J]. Anticancer Research, 2006, 26(1B): 647.
[11]Bose R, Kavuri S M, Searleman A C, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer[J]. Cancer Discovery, 2013, 3(2): 224.
[12]Jia Y, Chen L, Jia Q, et al. The well-accepted notion that gene amplification contributes to increased expression still remains, after all these years, a reasonable but unproven assumption[J]. Journal of Carcinogenesis, 2016, 15(1): 3.
[13]Massicano A V F, Marquez-Nostra B V, Lapi S E. Targeting HER2 in nuclear medicine for imaging and therapy[J]. Molecular Imaging, 2018, 17: 1-11.
[14]Goldstein R, Sosabowski J, Vigor K, et al. Developments in single photon emission computed tomography and PET-based HER2 molecular imaging for breast cancer[J]. Expert Review of Anticancer Therapy, 2013, 13(3): 359-373.
[15]Wooten A L, Madrid E, Schweitzer G D, et al. Routine production of 89Zr using an automated module[J]. Applied Sciences, 2013, 3(3): 593-613.
[16]Wright B D, Lapi S E. Designing the magic bullet? The advancement of immuno-PET into clinical use[J]. Journal of Nuclear Medicine, 2013, 54(8): 1171.
[17]Dijkers E C, Oude Munnink T H, Kosterink J G, et al. Biodistribution of 89Zr trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer[J]. Clinical Pharmacology & Therapeutics, 2010, 87(5): 586-592.
[18]Gaykema S B, Brouwers A H, Hovenga S, et al. Zirconium-89-trastuzumab positron emission tomography as a tool to solve a clinical dilemma in a patient with breast cancer[J]. Journal of Clinical Oncology, 2012, 30(6): e74-e75.
[19]Ulaner G A, Hyman D M, Ross D S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-Trastuzumab PET/CT[J]. Journal of Nuclear Medicine, 2016, 57(10): 1523-1528.
[20]Ulaner G A, Hyman D M, Lyashchenko S K, et al. 89Zr-Trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer[J]. Clinical Nuclear Medicine, 2017, 42(12): 1-6.
[21]Mortimer J E, Bading J R, Colcher D M, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET[J]. Journal of Nuclear Medicine, 2014, 55(1): 23-29.
[22]Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2positive breast cancer[J]. Journal of Nuclear Medicine, 2013, 54(11): 1869-1875.
[23]Sasada S, Kurihara H, Kinoshita T, et al. Visualization of HER2specific breast cancer intratumoral heterogeneity using 64Cu-DOTA-trastuzumab PET[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(12): 2146-2147.
[24]Martinez V C, Fernandez-Morales L A, Oliveres H, et al. Fulvestrant plus LHRH analogues in male with synchronous breast and prostate cancer[J]. Annals of Oncology, 2017, 28(8): 2027-2028.
[25]Spiridon C I, Guinn S, Vitetta E S. A comparison of the in vitro and in vivo activities of IgG and F(ab′)2 fragments of a mixture of three monoclonal anti-Her-2 antibodies[J]. Clinical Cancer Research, 2004, 10(10): 3542-3551.
[26]Beylergil V, Morris P G, Smith-Jones P M, et al. Pilot study of 68Ga-DOTA-F(ab′)2-trastuzumab in patients with breast cancer[J]. Nuclear Medicine Communications, 2013, 34(12): 1157.
[27]Nilsson J, Ståhl S, Lundeberg J, et al. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins[J]. Protein Expression & Purification, 1997, 11(1): 1.
[28]Nygren P A. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold[J]. Febs Journal, 2008, 275(11): 2668-2676.
[29]Nord K, Nilsson J, Nilsson B, et al. A combinatorial library of an alpha-helical bacterial receptor domain[J]. Protein Engineering Design & Selection, 1995, 8(6): 601-608.
[30]Nord K, Gunneriusson E, Ringdahl J, et al. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain[J]. Nature Biotechnology, 1997, 15(8): 772-777.
[31]Orlova A, Magnusson M, Eriksson T L, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule[J]. Cancer Research, 2006, 66(8): 4339-4348.
[32]Orlova A, Tolmachev V, Pehrson R, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors[J]. Cancer Research, 2007, 67(5): 2178.
[33]Eigenbrot C, Ultsch M, Dubnovitsky A, et al. Structural basis for high-affinity HER2 receptor binding by an engineered protein[J]. Proceedings of the National Academy of Sciences, 2010, 107(34): 15039-15044.
[34]Sörensen J, Velikyan I, Sandberg D, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga] ABY-025 affibody PET/CT[J]. Theranostics, 2016, 6(2): 262-271.
[35]Sandstrom M, Lindskog K, Velikyan I, et al. Biodistribution and radiation dosimetry of the anti HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients[J]. Journal of Nuclear Medicine, 2016, 57(6): 867-871.
[36]Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6 428): 446-448.
[37]Vaneycken I, D’huyvetter M, Hernot S, et al. Immuno-imaging using nanobodies[J]. Current Opinion in Biotechnology, 2011, 22(6): 877-881.
[38]Muyldermans S. Nanobodies: natural single domain antibodies[J]. Annual Review of Biochemistry, 2013, 82(82): 775-797.
[39]Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma[J]. Journal of Nuclear Medicine, 2016, 57(1): 27-33. |