[1]Koehler L, Gagnon K, McQuarrie S, et al. Iodine-124: a promising positron emitter for organic PET chemistry[J]. Molecules, 2010, 15(4): 2686-2718.
[2]Chacko A M, Divgi C R. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography[J]. Med Chem, 2011, 7(5): 395-412.
[3]Pentlow K S, Graham M C, Lambrecht R M, et al. Quantitative imaging of iodine-124 with PET[J]. J Nucl Med, 1996, 37(9): 1557-1562.
[4]Kondo K, Lambrecht R M, Norton E F, et al. Cyclotron isotopes and radiopharmaceuticals ⅩⅫ. Improved targetry and radiochemistry for production of 123I and 124I[J]. Int J Appl Radiat Isot, 1977, 28(9): 765-771.
[5]Lambrecht R M, Sajjad M, Qureshi M A, et al. Production of iodine-124[J]. Journal of Radioanalytical & Nuclear Chemistry, 1988, 127(2): 143-150.
[6]Scholten B, Kovács Z, Tárkányi F, et al. Excitation functions of 124Te(p, xn) 124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron[J]. Applied Radiation & Isotopes, 1995, 46(4): 255-259.
[7]Schmitz J. The production of [124I] iodine and [86Y]yttrium[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2011, 38(1): 4-9.
[8]Nagatsu K, Fukada M, Minegishi K, et al. Fully automated production of iodine-124 using a vertical beam[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(1): 146-157.
[9]Qaim S M, Hohn A, Bastian T, et al. Some optimisation studies relevant to the production of high-purity at a small-sized cyclotron[J]. Applied Radiation & Isotopes, 2003, 58(1): 69-78.
[10]Bastian T, Coenen H H , Qaim S M. Excitation functions of 124Te(d, xn) 124,125I reactions from threshold up to 14 MeV: comparative evaluation of nuclear routes for the production of 124I[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2001, 55(3): 303-308.
[11]Hassan K F, Qaim S M, Saleh Z A, et al. 3He-particle-induced reactions on Sb for production of 124I[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2006, 64(4): 409.
[12]Van den Bosch R, De Goeij J J, Van der Heide J A, et al. A new approach to target chemistry for the iodine-123 production via the 124Te(p, 2n) reaction[J]. Int J Appl Radiat Isot, 1977, 28(3): 255-261.
[13]Glaser M, Mackay D B, Ranicar A S O, et al. Improved targetry and production of iodine-124 for PET studies[J]. Radiochimica Acta/international Journal for Chemical Aspects of Nuclear Science & Technology, 2004, 92(12): 951-956.
[14]Zaidi J H, Qaim S M, Stöcklin G. Excitation functions of deuteron induced nuclear reactions on natural tellurium and enriched 122 Te: Production of 123I via the 122Te(d,n) 123I-process[J]. International Journal of Applied Radiation & Isotopes, 1983, 34(10): 1425-1430.
[15]Oberdorfer F, Helus F, Maierborst W. Experiences in the routine production ofI via the Te(p, 2n)I reaction with a low energy cyclotron[J]. Journal of Radioanalytical Chemistry, 1981, 65(1-2): 51-56.
[16]Apelt H, Blessing G, Knieper J, et al. Some technical improvements in the production of 123I via the 124Te(p, 2n) 123I reaction at a compact cyclotron[J]. International Journal of Applied Radiation & Isotopes, 1981, 32(8): 581-587.
[17]Sheh Y, Koziorowski J, Balatoni J, et al. Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target[J]. Radiochimica Acta, 2000, 88(3-4): 169.
[18]Sajjad M, Bars E, Nabi H A. Optimization of 124I production via 124Te(p,n)124I reaction[J]. Applied Radiation & Isotopes, 2006, 64(9): 965-970.
[19]Nye J A, Avilarodriguez M A, Nickles R J. Production of [124I] iodine on an 11 MeV cyclotron[J]. Radiochimica Acta, 2006, 94(4): 213-216.
[20]Alekseev I E, Darmograi V V,Marchenkov N S. Development of diffusion-thermal methods for preparing 67Cu and 124I for radionuclide therapy and positron emission tomography[J]. Radiochemistry, 2005, 47(5): 502-509.
[21]Smith G E, Sladen H L, Biagini S C, et al. Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography[J]. Dalton Trans, 2011, 40(23): 6196.
[22]Knust E J, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets[J]. Applied Radiation & Isotopes, 2000, 52(2): 181-184.
[23]Blasberg R, Roelcke U, Weinreich R. [124I] iododeoxyuridine imaging tumor proliferation[J]. Journal of Nuclear Medicine, 1996, 37(Suppl 5): 106-128.
[24]Van d B R, De Goeij J J, Ja V D H,et al. A new approach to target chemistry for the iodine-123 production via the 124Te(p, 2n) reaction[J]. International Journal of Applied Radiation & Isotopes,1977, 28(3): 255.
[25]Shikata E, Amano H. Dry-distillation of iodine-131 from several tellurium compounds[J]. Journal of Nuclear Science & Technology, 1973, 10(10): 80-88.
[26]Braghirolli A M S, Waissmann W, Silva J B D, et al. Production of iodine-124 and its applications in nuclear medicine[J]. Applied Radiation & Isotopes, 2014, 90(90C): 138-148.
[27]Zweit J, Sharma H L, Goodall R, et al. Excitation functions of proton induced reactions in natural tellurium: production of no carrier added I-124 for PET applications[J]. Proceed-ings of the Fourth International Workshop on Targetry and Target Chemistry, 1991, 63(5): 76-78.
[28]Robinson M K, Doss M, Shaller C, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2-diabody[J]. Cancer Research, 2005, 65(4): 1471-1478.
[29]Dekker B, Keen H, Shaw D, et al. Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124[J]. Nuclear Medicine & Biology, 2005, 32(4): 403.
[30]Verel I, Visser G W M, Vosjan M J W D, et al. High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2004, 31(12): 1645-1652.
[31]Verel I, Visser G W, Boerman O C, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET[J]. Cancer Biotherapy & Radiopharmaceuticals, 2003, 18(4): 655.
[32]Sundaresan G, Yazaki P J, Shively J E, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2003, 44(12): 1962-1969.
[33]Glaser M, Brown D J, Law M P, et al. Preparation of no-carrier-added [124I] A14-iodoinsulin as a radiotracer for positron emission tomography[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2001, 44(6): 465-480.
[34]Daghighian F, Pentlow K S, Larson S M, et al. Development of a method to measure kinetics of radiolabelled monoclonal antibody in human tumour with applications to microdosimetry: positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma[J]. European Journal of Nuclear Medicine, 1993, 20(5): 402-409.
[35]Westera G, Reist H W, Buchegger F, et al. Radioimmuno positron emission tomography with monoclonal antibodies: a new approach to quantifying in vivo tumour concentration and biodistribution for radioimmunotherapy[J]. Nuclear Medicine Communications, 1991, 12(5): 429.
[36]Bakir M A, Eccles S, Babich J W, et al. C-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 1992, 33(12): 2154-2160.
[37]Glaser M, Carroll V A, Collingridge D R, et al. Preparation of the iodine-124 derivative of the Bolton–Hunter reagent ([124I]I-SHPP) and its use for labelling a VEGF antibody as a PET tracer[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2002, 45(12): 1077-1090.
[38]Divgi C R, Pandit-Taskar N, Jungbluth A A, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (I-cG250) and PET in patients with renal masses: a phase I trial[J]. Lancet Oncology, 2007, 8(4): 304-310.
[39]Brouwers A H, Dorr U, Lang O, et al. 131I-cG250 monoclonal antibody immunoscintigraphy versus [18F]-FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study[J]. Nucl Med Commun, 2002, 23(3): 229-236.
[40]Pryma D A, O'Donoghue J A, Humm J L, et al. Correlation of in vivo and in vitro measures of carbonic anhydrase IX antigen expression in renal masses using antibody 124I-cG250[J]. J Nucl Med, 2011, 52(4): 535-540.
[41]Salacinski P, Hope J, Mclean C. Iodination of proteins glycoproteins and peptides using a solid phase oxidizing agent (IODO-GEN)[J]. Analytical Biochemistry, 1981: 117-146.
[42]Lee F T, Hall C, Rigopoulos A, et al. Immuno-PET of human colon xenograft bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2001, 42(5): 764.
[43]Sundaresan G, Yazaki P J, Shively J E, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2003, 44(12): 1962-1969.
[44]Guenther I, Wyer L, Knust E J, et al. Radiosynthesis and quality assurance of 5-[124I]Iodo-2′-deoxyuridine for functional PET imaging of cell proliferation[J]. Nuclear Medicine & Biology, 1998, 25(4): 359-365.
[45]Blasberg R, Roelcke U R, Beattie B, et al. Imaging brain tumor proliferative activity with [124I] iododeoxyuridine[J]. Cancer Research, 2000, 60(3): 624-635.
[46]Roelcke U, Hausmann O, Merlo A, et al. PET imaging drug distribution after intratumoral injection: the case for (124)I-iododeoxyuridine in malignant gliomas[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2002, 43(11): 1444-1451.
[47]Tjuvajev J G, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression[J]. J Nucl Med, 2002, 43(8): 1072-1083.
[48]Dekker B, Keen H, Lyons S, et al. MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET[J]. Nuclear Medicine & Biology, 2005, 32(3): 241.
[49]Reischl G, Dorow D S, Cullinane C, et al. Imaging of tumor hypoxia with [I-124] IAZA in comparison with [F-18] FMISO and [F-18]FAZA first small animal PET results[J]. Journal of Pharmacy & Pharmaceutical Sciences, 2007, 10(2): 203-211.
[50]Bading J R, Shields A F. Imaging of cell proliferation: status and prospects[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2008, 49 (Suppl 2): 64S.
[51]Blasberg R G, Roelcke U, Weinreich R, et al. Imaging brain tumor proliferative activity with [124I] iododeoxyuridine[J]. Cancer Res, 2000, 60(3): 624-635.
[52]Fadok V A, Voelker D R, Campbell P, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J]. J Immunol, 1992, 148(7): 2207-2216.
[53]Verel I, Visser G W, Boerman O C, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET[J]. Cancer Biother Radiopharm, 2003, 18(4): 655-661.
[54]van Dongen G A, Visser G W, Lub-de Hooge M N, et al. Immuno-PET: a navigator in monoclonal antibody development and applications[J]. Oncologist, 2007, 12(12): 1379.
[55]Verel I V, Visser G W, Dongen G A. The promise of immuno-PET in radioimmunotherapy[J]. Journal of Nuclear Medicine, 2005, 46(Suppl 1): 164S-171S.
[56]Nayak T K, Brechbiel M W. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges[J]. Bioconjug Chem, 2009, 20(5): 825.
[57]Wilbur D S, Hadley S W, Hylarides M D, et al. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer[J]. Journal of Nuclear Medicine, 1989, 30(2): 216-226.
[58]Zechmann C M, Afsharoromieh A, Armor T, et al. Radiation dosimetry and first therapy results with a 124I/131I labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2014, 41(7): 1280-1292.
[59]Knowles S M, Tavare R, Zettlitz K A, et al. Applications of immunoPET: using 124I anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer[J]. Clin Cancer Res, 2014, 20(24): 6367-6378.
[60]O’Donoghue J A, Smith-Jones P M, Humm J L, et al. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET[J]. J Nucl Med, 2011, 52(12): 1878-1885.
[61]Lee C L, Wahnishe H, Sayre G A, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET[J]. Medical Physics, 2010, 37(9): 4861-4867.
[62]Ruhlmann M, Jentzen W, Ruhlmann V, et al. High level of agreement between pretherapeutic 124I PET and intratherapeutic 131I imaging in detecting iodine-positive thyroid cancer metastases[J]. J Nucl Med, 2016, 57(9): 1339-1342. |