[1]Wadas T J, Wong E H, Weisman G R, et al. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease[J]. Chem Rev, 2010, 110(5): 2858-2902.
[2]Correia J D, Paulo A, Raposinho P D, et al. Radiometallated peptides for molecular imaging and targeted therapy[J]. Dalton Trans., 2011, 40(23): 6144-6167.
[3]Zeglis B M, Houghton J L, Evans M J, et al. Underscoring the in fluence of inorganic chemistry on nuclear imaging with radiometals[J]. Inorg. Chem, 2014, 53: 1880-1899.
[4]Price E W, Orvig C.Matching chelators to radiometals for radiopharmaceuticals[J]. Chem. Soc. Rev., 2014, 43(1): 260-290.
[5]Price T W, Greenman J, Stasiuk G J. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89 Zr and 44Sc[J]. Dalt. Trans., 2016, 40(45): 147.
[6]Zinn K R, Chaudhuri T R, Cheng T P,et al. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding[J]. Cancer, 1994, 73(3 Suppl): 774-778.
[7]Kim J Y, Park H, Lee J C, et al.A simple Cu-64 production and its application of Cu-64 ATSM[J]. Appl. Radiat. Isot., 2009, 67(7-8):1 190-1194.
[8]Obata A, Kasamatsu S, McCarthy D W, et al.Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron[J]. Nucl. Med. Biol., 2003, 30(5): 535-539.
[9]Kozempel J, Abbas K, Simonelli F, et al. A novel method for n.c.a. 64Cu production by the 64Zn(d, 2p) 64Cu reaction and dual ion-exchange column chromatography[J]. Radiochim Acta, 2007, 95(2): 75-80.
[10]Zhernosekov K P, D Filosofov V, Baum R P,et al. Processing of generator produced 68Ga for medical application[J]. J. Nucl. Med., 2007, 48(10): 1741-1748.
[11]Yoo J, Tang L, Perkins T, et al. Preparation of high specific activity 86Y using a small biomedical cyclotron[J].Nucl. Med. Biol., 2005, 32(8): 891-897.
[12]Dejesus O T , Nickles R J.Production and purification of 89Zr, a potential PET antibody label[J]. Int. J. Rad. Appl. Instrum. A.,1990, 41(8): 789-790.
[13]Woodin K S, Heroux K J, Boswell C A, et al. Kinetic inertness and electrochemical behavior of copper(Ⅱ) tetraazamacrocyclic complexes: Possible implications for in vivo stability[J].Eur. J. Inorg. Chem., 2005(23): 4829-4833.
[14]Wood K A, Wong W L, Saunders M I.[64Cu]diacetyl-bis(N4-methyl-thiosemicarbazone)-a radiotracer for tumor hypoxia[J].Nucl. Med. Biol., 2008, 35(4): 393-400.
[15]Ribot E J, Thiaudière E, Roulland R, et al.Application of MRI phase-difference mapping to assessment of vascular concentrations of BMS agent in mice[J]. Contrast Media Mol. Imaging, 2008, 3(2): 53-60.
[16]Morfin J F , Tóthé.Kinetics of Ga(NOTA) formation from weak Ga-citrate complexes[J]. Inorg. Chem., 2011, 50(20): 10371-10378.
[17]Singhal A, Toth L M, Lin J S, et al.Zirconium(Ⅳ) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution[J].J. Am. Chem. Soc., 1996, 118(46): 11529-11534.
[18]Meijs W E, Herscheid J D M, Haisma H J, et al.Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89[J]. Int. J. Radiat, 1992, 43(12): 1443-1447.
[19]Zhai C, Summer D, Rangger C, et al. Novel bifunctional cyclic chelator for (89)Zr labeling-radiolabeling and targeting properties of RGD conjugates[J]. Mol. Pharm.,2015, 12(6):2142-2150.
[20]Patra M, Bauman A, Mari C, et al.An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes[J].Chem. Commun. (Camb)., 2014, 50(78): 11523-11525.
[21]Deri M A, Ponnala S, Kozlowski P, et al. P-SCN-Bn-HOPO: A superior bifunctional chelator for 89Zr-Immuno PET[J]. Bioconjug. Chem., 2015, 26(12): 2579-2591.
[22]Dearling J L J, Lewis J S, Mullen G E D, et al.Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro[J]. Eur. J. Nucl. Med., 1998, 25(7): 788-792.
[23]Dearling J L J, Lewis J S, Mullen G E D, et al.Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: Structure-activity relationships[J].J. Biol. Inorg. Chem., 2002, 7(3): 249-259.
[24]Lewis J S, McCarthy D W, McCarthy T J, et al.Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model[J]. J. Nucl. Med., 1999, 40(1): 177-183.
[25]Maurer R I, Blower P J, Dilworth J R, et al.Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals[J]. J. Med. Chem., 2002, 45(7): 1420-1431.
[26]Castle T C, Maurer R I, Sowrey F E, et al.Hypoxia-targeting copper bis(selenosemicarbazone) complexes: Comparison with their sulfur analogues[J]. J. Am. Chem. Soc., 2003, 125(33): 10040-10049.
[27]Burgman P, O’Donoghue J A, Lewis J S, et al.Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM[J]. Nucl. Med. Biol., 2005, 32(6): 623-630.
[28]Anderson C J, Dehdashti F, Cutler P D, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors[J].J. Nucl. Med., 2001, 42(2): 213-221.
[29]Glaus C, Rossin R, Welch M J, et al.In vivo evaluation of Cu-64-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent[J].Bioconjug. Chem., 2010, 21(4): 715-722.
[30]Zhou M, Zhang R, Huang M, et al.A Chelator-Free multifunctional-[64Cu]-CuS nanoparticle platform for simultaneous Micro-PET/CT imaging and photothermal ablation therapy[J].J. Am. Chem. Soc., 2010, 132: 15351-15358.
[31]Peng F, Lu X, Janisse J, et al. PET of human prostate cancer xenografts in mice with increased uptake of 64CuCl2[J]. J. Nucl. Med., 2006, 47(10): 1649-1652.
[32]Peng F, Muzik O, Gatson J, et al. “Assessment of traumatic brain injury by increased 64Cu Uptake on 64CuCl2 PET/CT[J]. J. Nucl. Med., 2015, 5(8): 1252-1257.
[33]Virgolini I, Ambrosini V, Bomanji J B, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga- DOTA conjugated peptides: 68Ga- DOTA-TOC, 68Ga- DOTA-NOC, 68Ga- DOTA-TATE[J]. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(10): 2004-2010.
[34]Ambrosini V, Tomassetti P, Castellucci P, et al.Comparison between 68Ga- DOTA-NOC and 18F-DOPA PET for the detection of gastro entero pancreatic and lung neuro-endocrine tumours[J].Eur. J. Nucl. Med. Mol. Imaging, 2008, 3(8): 1431-1438.
[35]Prasad V, Ambrosini V, Hommann M, et al.Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga- DOTA-NOC receptor PET/CT[J].Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(1): 67-77.
[36]Henze M, Schuhmacher J, Hipp P, et al.PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas[J].J. Nucl. Med., 2001,42, (7): 1053-1056.
[37]Hofmann M, Maecke H, Weckesser E, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data[J]. Eur.J. Nucl. Med., 2001,28, (12): 1751-1757.
[38]Kowalski J. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe1-Tyr3-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors[J]. Mol. Imaging Biol.,2003, 5(1): 42-48.
[39]Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours[J]. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(10): 1617-1626.
[40]Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT[J]. J. Nucl. Med., 2007, 48(4): 508-518.
[41]Poeppel T D, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors[J].J Nucl Med, 2011, 52(12): 1864-1870.
[42]Antunes P, Ginj M, Zhang H, et al.Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals?[J].Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(7): 982-993.
[43]Baum R P, Prasad V, Müller D, et al.Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In or 68Ga-labeled affibody molecules[J].J. Nucl. Med., 2010, 51(6): 892-897.
[44]Schuhmacher J, Zhang H, Doll J, et al. GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6-14) analog[J]. J. Nucl. Med., 2005, 46(4): 691-699.
[45]Vitha T, Kubícˇek V, Hermann P, et al.Lanthanide(Ⅲ) complexes of bis(phosphonate) monoamide analogues[J]. J. Med. Chem., 2008, 51(3): 677-683.
[46]Afshar-Oromieh A, Malcher A, Eder M, et al.PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions[J].Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(4): 486-495.
[47]Palm S, Enmon R M, Matei C, et al.Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI[J]. J. Nucl. Med., 2003, 44(7): 1148-1155.
[48]Wiseman G A, Kornmehl E, Leigh B, et al.Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials[J]. J. Nucl. Med., 2003, 44: 465-474.
[49]Helisch A, Fórster G J, Reber H, et al.Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours[J].Eur. J. Nucl. Med. Mol., Imaging, 2004, 31(10): 1386-1392.
[50]Garmestani K, Milenic D E, Plascjak P S, et al.A new and convenient method for purification of 86Y using a Sr(Ⅱ) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin[J]. Nucl. Med. Biol., 2002, 29(5): 599-606.
[51]Ulmert D, Evans M J, Holland J P, et al. Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen[J]. Cancer Discov., 2012, 2(4): 320-327.
[52]Garousi J, Andersson K G, Mitran B, et al.PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules[J]. Int. J. Oncol., 2016, 48(4): 1325-1332.
[53]Börjesson P K E, Jauw Y W S, Boellaard R, et al.Performance of immuno positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients[J]. Clin. Cancer Res., 2006, 12(71): 2133-2140.
[54]Muylle K, Flamen P, Vugts D J, et al.Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab[J].Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(8): 1304-1314.
[55]Dijkers E C, Oude Munnink T H, Kosterink J G, et al.Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer[J].Clin. Pharmacol. Ther., 2010, 87(5): 586-592.
[56]Pandit-Taskar N, O’Donoghue J A, Beylergil V, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer[J]. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(11): 2093-2105. |