[1]Chen W Q, Zuo T T, Zheng R S, et al. Lung cancer incidence and mortality in China in 2013[J]. Zhonghua Zhong Liu Za Zhi, 2017, 39(10): 795-800.
[2]Yao Q, Zhang A M, Ma H, et al. Novel molecular beacons to monitor microRNAs in non-small-cell lung cancer[J]. Mol Cell Probes, 2012, 26(5): 182-187.
[3]Burvenich I, Schoonooghe S, Cornelissen B, et al. In vitro and in vivo targeting properties of iodine-123 or iodine-131-labeled monoclonal antibody 14C5 in a non-small cell lung cancer and colon carcinoma model[J]. Clinical Cancer Research, 2005, 11(20): 7288-7296.
[4]Chen Z , Gao H , Li M , et al. Targeted radionuclide therapy for lung cancer with iodine-131-labeled peptide in a nude-mouse model[J]. Anti-cancer drugs, 2017, 28(5): 480-488.
[5]Sun Y, Huang J, Yang Z. The roles of ADAMTS in angiogenesis and cancer[J]. Tumour Biol, 2015, 36(6): 4039-4051.
[6]Kristensen T B, Knutsson M L, Wehland M, et al. Anti-vascular endothelial growth factor therapy in breast cancer[J]. Int J Mol Sci, 2014, 15(12): 23024-23041.
[7]Meyer J P , Edwards K J , Kozlowski P , et al. Selective imaging of VEGFR-1 and VEGFR-2 receptors using 89Zr-labeled single-chain VEGF mutants[J]. Journal of Nuclear Medicine, 2016: 1811-1816.
[8]王荣福. 同位素示踪RRL肿瘤新生血管显像的应用[J]. 同位素,2015,28(4):201-206.
[9]Menichetti L, Kusmic C, Panetta D , et al. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2013, 40(8): 1265-1274.
[10]Zhao M, Yang W, Zhang M, et al. Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts[J]. Tumor Biology, 2016, 37(9): 12123-12131.
[11]Jing W, Wang H, Kong L, et al. Great efficacy of bevacizumab plus erlotinib for leptomeningeal metastases from non-small cell lung cancer with initially positive EGFR mutation: a case report[J]. Cancer Biol Ther, 2018(15): 1-5.
[12]Orlandini M, Galvagni F, Bardelli M, et al. The characterization of a novel monoclonal antibody against CD93 unveils a new antiangiogenic target[J]. Oncotarget, 2014, 5(9): 2750-2760.
[13]Langenkamp E, Zhang L, Lugano R, et al. Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival[J]. Cancer Research, 2015, 75(21): 4504-4516.
[14]Olsen R S, Lindh M, Vorkapic E, et al. CD93 gene polymorphism is associated with disseminated colorectal cancer[J]. International Journal of Colorectal Disease, 2015, 30(7): 883-890.
[15]Bao L, Tang M, Zhang Q, et al. Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma[J]. Biochem Biophys Res Commun, 2016, 476(4): 467-474.
[16]Ronca R, Benkheil M, Mitola S, et al. Tumor angiogenesis revisited: regulators and clinical implications[J]. Med Res Rev, 2017, 37(6): 1231-1274.
[17]Masiero M, Simões F C, Han H D, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis[J]. Cancer Cell, 2013, 24(2): 229-241.
[18]Piperdi B, Merla A, Perez-Soler R. Targeting angiogenesis in squamous non-small cell lung cancer[J]. Drugs, 2014, 74(4): 403-413. |