[1]Mo Y X, Yin Y F, Li Y M. Neural nAChRs PET imaging probes[J]. Nuclear Medicine Communications, 2014, 35(2): 135-143.
[2]黄乐乐,刁尧,尹雅芙,等. 烟碱乙酰胆碱受体显像剂2-[18F]-A-85380的合成及小鼠体内分步[J]. 中国医科大学学报, 2013,42(9):777-780.Huang Lele, Diao Yao, Yin Yafu, et al. Radiosynthesis of 2-[18F]-A-85380 and its biodistribution in mice[J]. Journal of China Medical University, 2013, 42(9): 777-780(in Chinese).
[3]Farkas E, Luiten P G, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases[J]. Brain Res Rev, 2007, 54(1): 162-180.
[4]Xiao Y,Guan Z Z, Wu C X, et al. Correlations between cholinesterase activity and cognitive scores in post-ischemic rats and patients with vascular dementia[J]. Cell Mol Neurobiol, 2012, 32(3): 399-407.
[5]Le Foll B, Chefer S I, Kimes A S, et al. Impact of short access nicotine self-administration on expression of α4β2 nicotinic acetylcholine receptors in non-human primates[J]. Psychopharmacology, 2016, 233(10): 1829-1835.
[6]Gold G, Kovari E, Hof P R, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia[J]. Stroke, 2005, 36(6): 1184-1188.
[7]Taniwaki T, Okayama A, Shigeto H, et al. Functional network of the basal ganglia and cerebellar motor loops in vivo: Different activation patterns between self-initiated and externally triggered movements[J]. Neuroimage, 2006, 31(2): 745-753.
[8]Yin Y F, Li X N, Li Y M, et al. Preliminary clinical study in patients with hemispatial neglect after stroke by neglect test battery and 99mTc-ECD SPECT[J]. Nuclear Medicine and Biology, 2009, 36(4): 467-475.
[9]Ni J W,Matsumoto K,Li H B, et al. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat[J]. Brain Research, 1995, 673(2): 290-296.
[10]Zakharova E I, Storozheva Z I, Dudchenko A M, et al. Chronic cerebral ischaemia forms new cholinergic mechanisms of learning and memory[J]. International Journal of Alzheimer’s Disease, 2010: 1-17.
[11]Cloke J M.Winters B D. α2β4 Nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketaminetreated rats: implications for cognitive dysfunction in schizophrenia[J]. Neuropharmacology, 2015, (90): 42-52.
[12]Wang J, Zhang H Y, Tang X C. Cholinergic deficiency involved in vascular dementia:possible mechanism and strategy of treatment[J]. Acta Pharmacologica Sinica, 2009, 30(7): 879-888.
[13]Nanri M, Miyake H, Murakami Y, et al. GTS-21, a nicotinic agonist, attenuates multiple infarctions and cognitive deficit caused by permanent occlusion of bilateral common carotid arteries in rats[J]. Jpn J Pharmacol, 1998, 78(4): 463-469.
[14]Collobya S J, Firbanka M J, Pakrasia S, et al. Alterations in nicotinic α4β2 receptor binding in vascular dementia using 123I-5IA-85380 SPECT: Comparison with regional cerebral blood flow[J]. Neurobiology of Aging, 2011, 32(2): 293-301.
[15]姜玉艳,尹雅芙,罗晓光,等. 烟碱型乙酰胆碱受体在帕金森病认知功能障碍中的作用[J]. 中国临床医学影像杂志,2014,25(2):887-889.Jiang Yuyan, Yin Yafu, Luo Xiaoguang, et al. The function of nicotinic acetycholine receptors in Parkinson’s disease with cognitive disorder[J]. Journal China Clinic Medicine Imaging, 2014, 25(2): 887-889(in Chinese).
[16]Sabri O, Kendziorra K, Wolf H, et al. Acetylcholine receptors in dementia and mild cognitive impairment[J]. European Journal of Nuclear Medicine And Molecular Imaging, 2008, 35(1): 30-45.
[17]Meyer P M, Strecker K, Kendziorra K,et al.Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease[J]. Arch Gen Psychiatry, 2009, 66(8): 866-877.
[18]Cechetti F, Worm P V, Pereira L O, et al. The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate[J]. Brazilian Journal of Medical and Biological Research, 2010,43(12): 1178-1183.
[19]Thomsen M S, Andreasen J T, Arvaniti M, et al. Nicotinic acetylcholine receptors in the pathophysiology of al zheimer’s disease: the role of protein-protein interactions in current and future treatment[J]. Curr Pham Des, 2016, 22(14): 2015-2034.
[20]Nanri M l, Miyake H, Murakami Y, et al. GTS-21, a nicotinic agonist,attenuates multiple infractions and cognitive deficit caused by permanent occlusion of bilateral common carotid arteries in rats[J]. Jpn J Pharmacol, 1998, 78(4): 463-469. |