[1]Cornelio D B, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy[J]. Ann Oncol, 2007, 18(9): 1457-1466.
[2]Markwalder R, Reubi J C. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation[J]. Cancer Research, 1999, 59(5): 1152-1159.
[3]Baratto L, Duan H, Mcke H, et al. Imaging the distribution of gastrin-releasing peptide receptors in cancer[J]. Journal of Nuclear Medicine, 2020, 61(6): 792-798.
[4]Opalinska M, Hubalewska-Dydejczyk A, Sowa-Staszczak A. Radiolabeled peptides: current and new perspectives[J]. J Nucl Med Mol Imaging, 2017, 61(2): 153-167.
[5]Cona M M, Wang H, Li J, et al. Continuing pursuit for ideal systemic anticancer radiotherapeutics[J]. Investigational New Drugs, 2012, 30(5): 2050-2065.
[6]Uusijrvi H, Bernhardt P, Ericsson T, et al. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution[J]. Med Phys, 2006, 33(9): 3260-3269.
[7]Goddu S M, Howell R W, Rao D V. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and Svalues for radionuclides uniformly distributed in different cell compartments[J]. Journal of Nuclear Medicine, 1994, 35(2): 303-316.
[8]Goddu S M, Howell R W, Rao D V. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides[J]. Journal of Nuclear Medicine, 1994, 35(3): 521-530.
[9]Maina T, Nock B A, Kulkarni H, et al. Theranostic prospects of gastrin-releasing peptide receptor-radioantagonists in oncology[J]. PET Clin, 2017, 12(3): 297-309.
[10]Baratto L, Jadvar H, Iagaru A. Prostate cancer theranostics targeting gastrin-releasing peptide receptors[J]. Mol Imaging Biol, 2018, 20(4): 501-509.
[11]Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16436-16441.
[12]Lymperis E, Kaloudi A, Kanellopoulos P, et al. Comparative evaluation of the new GRPR-antagonist 111In-SB9 and 111In-AMBA in prostate cancer models: implications of in vivo stability[J]. J Labelled Comp Radiopharm, 2019, 62(10): 646-655.
[13]Zhong Z, Kan W, Liao W. Cellular internalization of a cell-penetrating peptide conjugated gastrin-releasing peptide receptor antagonist[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(3): 1201-1206.
[14]Wang Y, Tang Y, Zhou Z, et al. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes[J]. Langmuir, 2010, 26: 12509-12514.
[15]Wang Y, Chi E Y, Schanze K S, et al. Membrane activity of antimicrobial phenylene ethynylene based polymers and oligomers[J]. Soft Matter, 2012, 8(33): 8547-8558.
[16]Hill E H, Stratton K, Whitten D G, et al. Molecular dynamics simulation study of the interaction of cationic biocides with lipid bilayers: aggregation effects and bilayer damage[J]. Langmuir, 2012, 28: 14849-14854.
[17]Wang J, Zhuo L, Liao W, et al. Assessing the biocidal activity and investigating the mechanism of oligopphenylene-ethynylenes[J]. ACS Applied Materials & Interfaces, 2017, 9: 7964-7971.
[18]Mitran B, Rinne S S, Konijnenberg M W, et al. Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist 177Lu-DOTAGA-PEG(2) -RM26[J]. International Journal of Cancer, 2019, 145(12): 3347-3358.
[19]Mitran B, Thisgaard H, Rosenstr-m U, et al. High contrast PET imaging of GRPR expression in prostate cancer using cobalt-labeled bombesin antagonist RM26[J]. Contrast Media & Molecular Imaging, 2017, 2017: 6873684.
[20]Varasteh Z, Velikyan I, Lindeberg G, et al. Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging[J]. Bioconjugate Chemistry, 2013, 24(7): 1144-1153.
[21]Mansour N, Paquette M, Ait-Mohand S, et al. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [64Cu]-DOTHA2-PEG-RM26[J]. Nuclear Medicine and Biology, 2018, 56: 31-38.
[22]Lundmark F, Abouzayed A, Mitran B, et al. Heterodimeric radiotracer targeting PSMA and GRPR for imaging of prostate cancer-optimization of the affinity towards PSMA by linker modification in murine model[J]. Pharmaceutics, 2020, 12(7): 614.
[23]Dalm S U, Nonnekens J, Doeswijk G N, et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models[J]. Journal of Nuclear Medicine, 2016, 57(2): 260-265.
[24]Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, et al. Multifunctional targeted therapy system based on 99mTc/177Lu-labeled gold nanoparticles-Tat(49-57)-Lys3-bombesin internalized in nuclei of prostate cancer cells[J]. J Labelled Comp Radiopharm, 2013, 56(13): 663-671.
[25]Das S, Al-Toubah T, ElHaddad G, et al. 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors[J]. Expert Rev Gastroenterol Hepatol, 2019, 13(11): 1023-1031.
[26]Pan D, Yan Y, Yang R, et al. PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN[J]. Contrast Media & Molecular Imaging, 2014, 9(5): 342-348.
[27]Liao W, Zhuo L G, Yang X, et al. Biocidal activity and mechanism study of unsymmetrical oligo-phenylene-ethynylenes[J]. ACS Applied Bio Materials, 2020, 3(9): 5644-5651.
[28]Liu Y, Hu X, Liu H, et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2013, 54(12): 2132-2138.
|