[1]Mittendorfer B, Liem O. What does the measurement of whole-body fatty acid rate of appearance in plasma by using a fatty acid tracer really mean[J]. Diabetes, 2003, 52: 1641-1648.
[2]Aarsland A, Chinkes D, Wolfe RR. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinaemia in normal man[J]. J Clin Invest, 1996, 98: 2008-2017.
[3]Jalilian AR, Akhlaghi M, Mirzaii M, et al. Production and biological evaluation of [18F]-6-thia-14-fluoro-heptadecanoic acid[J]. Nucl Med Rev Cent East Eur, 2006,9(2): 108-113.
[4]Takala TO, Nuutila P, Pulkki K, et al. 14(R,S)-[18F]Fluoro-6-thia-heptadecanoic acid as a tracer of free fatty acid uptake and oxidation in myocardium and skeletal muscle[J]. Eur J Nucl Med Mol Imaging, 2002, 29(12): 1617-1622.
[5]Guiducci L, Gronroos T, Jarvisalo MJ, et al. Biodistribution of the fatty acid analogue 18F-FTHA: plasma and tissue partitioning between lipid pools during fasting and hyperinsulinemia[J]. J Nucl Med, 2007, 48(3): 455-462.
[6]DeGrado TR, Kitapci MT, Wang S, et al. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids[J]. J Nucl Med, 2006, 47(1):173-181.
[7]DeGrado TR, Bhattacharyya F, Pandey MK, et al. Synthesis and preliminary evaluation of 18-(18)F-fluoro-4-thia-oleate as a PET probe of fatty acid oxidation[J]. J Nucl Med, 2010, 51(8): 1310-1317.
[8]Stone CK, Pooley RA, DeGrado TR, et al. Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate[J]. J Nucl Med, 1998, 39(10): 1690-1696.
[9]Schulz G, von DJ, Kaiser HJ, et al. Imaging of betaoxidation by static PET with 14(R,S)-[18F]-fluoro-6-thiaheptadecanoic acid (FTHA) in patients with advanced coronary heart disease: a comparison with 18FDG-PET and 99Tcm-MIBI SPET[J]. Nucl Med Commun, 1996, 17(12): 1057-1064.
[10] Taylor M, Wallhaus TR, Degrado TR, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure[J]. J Nucl Med, 2001, 42(1): 55-62.
[11] Croteau E, Lavallee E, Labbe SM, et al. Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain[J]. Eur J Nucl Med Mol Imaging, 2010, 37(8): 1539-1550.
[12] Labbe SM, Grenier-Larouche T, Noll C, et al. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans[J]. Diabetes, 2012, 61(11): 2701-2710.
[13] The Effect of Insulin on the Intracellular Distribution of 14(R,S)-[18F]Fluoro-6-thiaheptadecanoic Acid in Rats[J]. Mol Imaging Biol, 2006, 8: 237-244.
[14] McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes, 2002, 51: 7-18.
[15] Turpeinen AK, Takala TO, Nuutila P, et al. Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F] fluoro-6-thia-heptadecanoic acid[J]. Diabetes, 1999, 48(6): 1245-1250.
[16] DeGrado TR. Synthesis of 14(R,S)-[18F] fluoro-6-thia-heptadecanoic acid(FTHA) [J]. J Labeled Comp Radiopharm,1991, 29: 989-995.
[17] Ying Ma, Bill X, Michael A, el al. Quantification of Kryptofix 2.2.2 in 2-18F-FDG and Other Radiopharmaceutials by LC/ MS/ MS [J]. Nucl Med Biol, 2002, 29: 125-129. |