同位素 ›› 2022, Vol. 35 ›› Issue (3): 164-178.DOI: 10.7538/tws.2022.35.03.0164
杨宇川;阚文涛;杨夏;魏洪源;卓连刚;王静;廖伟;赵鹏;王关全
出版日期:
2022-06-20
发布日期:
2022-06-20
YANG Yuchuan;KAN Wentao;YANG Xia;WEI Hongyuan;ZHUO Liangang;WANG Jing;LIAO Wei;ZHAO Peng;WANG Guanquan
Online:
2022-06-20
Published:
2022-06-20
摘要: 分别具有β-、 α、俄歇电子以及内转换电子衰变的放射性核素,在放射性药物研发以及临床评估中得到广泛应用,其中177Lu放射性治疗药物的研究在近年来得到了迅猛的发展,文献报道数量持续增长,177Lu放射性治疗药物引发了放药研究领域的强烈关注。本文对近两年177Lu标记的抗体、多肽、纳米颗粒,以及小分子放射性治疗药物临床前及临床研究最新进展进行综述。其中处于临床前研究的药物通过药物设计增强了靶向性,改进了药代动力学及生物性质;处于临床研究阶段的药物具有良好的安全性,对肿瘤发挥明显抑制作用,对延长患者生存期及提高患者的生存质量起到积极作用;对已有临床用药方式进行补充,如核素联合治疗、放化免疫联合治疗、诊疗一体化以及分批次用药方式;对临床用药的人体计量学数据进行补充,如177Lu-RM2在GRPR前列腺癌治疗中的人体剂量学。
杨宇川, 阚文涛, 杨夏, 魏洪源, 卓连刚, 王静, 廖伟, 赵鹏, 王关全. 177Lu放射性治疗药物研究新进展[J]. 同位素, 2022, 35(3): 164-178.
YANG Yuchuan, KAN Wentao, YANG Xia, WEI Hongyuan, ZHUO Liangang, WANG Jing, LIAO Wei, ZHAO Peng, WANG Guanquan. The Recent Research Development of 177Lu Radiopharmaceuticals[J]. Journal of Isotopes, 2022, 35(3): 164-178.
[1]Price E W, Cawthray J F, Bailey G A, et al. H4octapa: an acyclic chelator for 111In radiopharmaceuticals[J]. Journal of American Chemical Society, 2012, 134: 8670-8683. [2]Wu S L, Horrocks W D. General method for the determination of stability constants of lanthanide ion chelates by ligand-ligand competition: laser-excited Eu3+ luminescence excitation spectroscopy[J]. Analytical Chemistry, 1996, 68: 394-401. [3]Mishiro K, Hanaoka H, Yamaguchi A, et al. Design, development strategies, and medical applications[J]. Coordination Chemistry Reviews, 2019, 383: 104-131. [4]Srensen M A, Andersen V L, Hendel H W, et al. Automated synthesis of 68Ga/177Lu-PSMA on the Trasis miniAllinOne[J]. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63(8): 393-403. [5]Eryilmaz K, Kielbasa B. Fully automated synthesis of 177Lu labelled FAPI derivatives on the module Modular lab-Easy[J]. EJNMMI Radiopharmacy and Chemistry, 2021, 6: 16. [6]Sinnes J, Nagel J, Rsch F. AAZTA5 /AAZTA5 TOC: synthesis and radiochemical evaluation with 68Ga, 44Sc and 177Lu[J]. EJNMMI Radiopharm Chem, 2019, 4: 18. [7]Sinnes J P, Bauder-Wüst U, Schfer M, et al. 68Ga, 44Sc and 177Lu-labeled AAZTA 5-PSMA-617: synthesis, radiolabeling, stability and cell binding compared to DOTA-PSMA-617 analogues[J]. EJNMMI Radiopharmacy and Chemistry, 2020, 5: 28. [8]Chakravarty R, Goel S, Dash A, et al. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview[J]. Q J Nucl Med Mol Imaging, 2017, 61: 181-204 . [9]Sun X, Cai W, Chen X. Positron emission tomography imaging using radiolabeled inorganic nanomaterials[J]. Acc Chem Res, 2015, 48: 286-294. [10]Goel S, Chen F, Ehlerding E B, et al. Intrinsically radiolabeled nanoparticles: an emerging paradigm[J]. Small, 2014, 10: 3825-3830. [11]Ferro-Flores G, Ocampo-García B E, Santos-Cuevas C L, et al. Multifunctional radiolabeled nanoparticles for targeted therapy[J]. Current Medicinal Chemistry, 2014, 21(1): 124-138. [12]Kogos B, Cohen-Gould L, Rodriguez-Rodriguez C, et al. Electron microscopy of antibody-conjugated, lutetium-177 lanthanide gold-coated nanoparticles: Proof of concept of targeted loci-A potential theranostic agent[J]. AIP Advances, 2021,11: 45035. [13]Yook S, Cai Z, Jeong J J, et al. Dual-receptor-targeted (DRT) radiation nanomedicine labeled with 177Lu is more potent for killing human breast cancer cells that coexpress HER2 and EGFR than single-receptor-targeted (SRT) radiation nanomedicines[J]. Molecular Pharmaceutics, 2020, 17(4): 1226-1236. [14]Salazar-Onfray F, Lopez M, Lundqvist A, et al. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker[J]. British Journal of Cancer, 2002, 87: 414-422. [15]Miao Y, Quinn T P. Peptide-targeted radionuclide therapy for melanoma[J]. Critical Reviews in Oncology/Hematology, 2008, 67(3): 213-228. [16]Zhang X, Chen F, Turker M Z, et al. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles[J]. Biomaterials, 2020, 241: 119858. [17]Chakravarty R, Galerie A, Madhavan S, et al. Bioinspired synthesis of intrinsically 177Lu-labeled hybrid nanoparticles for potential cancer therapy[J]. Ind Eng Chem Res, 2020, 59(52): 22492-22500. [18]Kameswaran M, Pandey U, Gamre N, et al. Evaluation of 177Lu-CHX-A″-DTPA-Bevacizumab as a radioimmunotherapy agent targeting VEGF expressing cancers[J].Applied Radiation and Isotopes, 2016, 114: 196-201. [19]Rusckowski M, Wang Y, Blankenberg F G, et al. Targeted scVEGF/177Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy[J]. EJNMMI Research, 2016, 6: 4. [20]Mas-owska K, Witkowska E, Tymecka D, et al. Synthesis, physicochemical and biological study of gallium-68 and lutetium-177 labeled VEGF-A165/NRP-1 complex inhibitors based on peptide A7R and branched peptidomimetic[J]. Pharmaceutics, 2022, 14: 100. [21]Behnammanesh H, Johar S, Erfani M, et al. Design, preparation and biological evaluation of a 177Lu-labeled somatostatin receptor antagonist for targeted therapy of neuroendocrine tumors[J]. Bioorganic Chemistry, 2020, 94: 103381. [22]Herrmann K, Lapa C, Wester H J, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe Ga-68-pentixafor[J]. Journal of Nuclear Medicine, 2015, 56: 410-416. [23]Pirooznia N, Abdi K,Beiki D, et al. 177Lu-labeled cyclic RGD peptide as an imaging and targeted radionuclide therapeutic agent in non-small cell lung cancer: biological evaluation and preclinical study[J]. Bioorganic Chemistry, 2020, 102: 104100. [24]Parihar A S, Sood A, Kumar R, et al. Novel use of 177Lu-DOTA-RGD2 in treatment of 68Ga-DOTA-RGD2-avid lesions in papillary thyroid cancer with TENIS[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(10): 1-2. [25]Herrmann K, Lapa C, Wester H J, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe Ga-68-pentixafor[J]. Journal of Nuclear Medicine, 2015, 56: 410-416. [26]Herrmann K, Schottelius M, Lapa C, et al. First-in-Human experience of CXCR4-directed endoradiotherapy with 177Lu and Y-90-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease[J]. Journal of Nuclear Medicine, 2016, 57(2): 248-251. [27]vila-Sánchez M, Ferro-Flores G, Jiménez-Mancilla N, et al. Synthesis and preclinical evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324: 21-32. [28]Ding Z, Hal F. Preparation and cellular-interaction investigation of 177Lu/FITC labeled NGR peptides[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325: 67-74. [29]Gains J E, Bomanji J B, Fersht N L, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma[J]. Journal of Nuclear Medicine, 2011, 52(7): 1041-1047. [30]Krebs S, O’Donoghue J A, Biegel E, et al. Comparison of 68Ga-DOTA-JR11 PET/CT with dosimetric 177Lu-satoreotide tetraxetan (177Lu-DOTA-JR11) SPECT/CT in patients with metastatic neuroendocrine tumors undergoing peptide receptor radionuclide therapy[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47: 3047-3057. [31]Strosberg J, El-Haddad G, Wolin E, et al. 177Lu-Dotatate for midgut neuroendocrine tumors[J]. New England Journal of Medicine, 2017, 376: 125-135. [32]Cullinane C, Waldeck K, Kirby L, et al. Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP[J]. Scientific Report, 2020, 10: 10196. [33]Nock B A, Kaloudi A, Lymperis E, et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results[J]. Journal of Nuclear Medicine, 2017, 58(1): 75-80. [34]Dalm S U, Bakker I L, de Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology[J]. Journal of Nuclear Medicine, 2017, 58(2): 293-299. [35]Rousseau E, Lau J, Zhang Z, et al. Comparison of biological properties of[177Lu]Lu-ProBOMB1 and[177Lu]Lu-NeoBOMB1 for GRPR targeting[J]. J Label Compd Radiopharm, 2020, 63(2): 56-64. [36]Yeh M C, Tse B W C, Fletcher N L, et al. Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab- antibody against glypican-1 (GPC-1)[J]. EJNMMI Research, 2020, 10: 46. [37]Delage J A, Faivre-Chauvet A, Fierle J K, et al. 177Lu radiolabeling and preclinical theranostic study of 1C1m-Fc: an anti-TEM-1 scFv-Fc fusion protein in soft tissue sarcoma[J]. EJNMMI Research, 2020, 10: 98. [38]Wu A M. Engineered antibodies for molecular imaging of cancer[J]. Methods, 2014, 65(1): 139-147. [39]Xenaki K T, Oliveira S, van Bergen En Henegouwen P M P. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors[J]. Frontiers in Immunology, 2017, 8: 1287. [40]Tsai W T K, Zettlitz K A, Dahlbom M, et al. Evaluation of[131 I] I-and[177Lu] Lu-DTPA-A11 minibody for radioimmunotherapy in a preclinical model of PSCA-Expressing prostate cancer[J]. Molecular Imaging and Biology, 2020, 22: 1380-1391. [41]Carpanese D, Ferro-Flores G, Ocampo-Garcia B, et al. Development of 177Lu-scFvD2B as a potential immunotheranostic agent for tumors overexpressing the prostate specific membrane antigen[J]. Scientific Reports, 2020, 10: 9313. [42]Borgna F, Deberle L M, Cohrs S, et al. Combined application of albumin-binding[177Lu]Lu-PSMA-ALB-56 and fast-cleared PSMA inhibitors: optimization of the pharmacokinetics[J]. Molecular Pharmaceutics, 2020, 17(6): 2044-2053. [43]Huyvetter M D, Vincke C, Xavier C, et al. Targeted radionuclide therapy with a 177Lu-labeled anti- HER2 nanobody[J]. Theranostics, 2014, 4: 708-720. [44]Hernandez R, Grudzinski J J, Aluicio-Sarduy, et al. 177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer[J]. Journal of Nuclear Medicine, 2020, 10: 130. [45]Kazuma O, Atsushi I. Well-designed bone-seeking radiolabeled compounds for diagnosis and therapy of bone metastases[J]. BioMed Research International, 2015(8): 1-12. [46]Vitha T, Kubicek V, Hermann P, et al. Lanthanide(Ⅲ) complexes of bis(phosphonate) monoamide analogues of DOTA: bone-seeking agents for imaging and therapy[J]. Journal of Medicinal Chemistry, 2008, 51(3): 677-683. [47]Meckel M, Bergmann R, Miederer M, et al. Bone targeting compounds for radiotherapy and imaging: *Me(Ⅲ)-DOTA conjugates of bisp-hosphonic acid, pamidronic acid and zoledronic acid[J]. EJNMMI Radiopharmacy and Chemistry, 2017, 1(1): 14. [48]Zakaly H M H, Motafa M Y A, Deryabina D, et al. Comparative studies on the potential use of 177Lu-based radiopharmaceuticals for the palliative therapy of bone metastases[J]. International Journal of Radiation Biology, 2020, 96(6): 779-789. [49]Bianchi L, Baroli A, Marzoli L, et al. Prospective dosimetry with 99mTc-MDP in metabolic radiotherapy of bone metastases with 153Sm-EDTMP[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36(1): 122-129. [50]Ogawa K, Washiyama K. Bone target radiotracers for palliative therapy of bone metastases[J]. Current Medicinal Chemistry, 2012, 19(20): 3290-3300. [51]Kolesnikov-Gauthier H, Lemoine N, Tresch-Bruneel E, et al. Efficacy and safety of 153Sm-EDTMP as treatment of painful bone metastasis: a large single-center study[J]. Supportive Care in Cancer, 2018, 26(3): 751-758. [52]Ogawa K, Ishizaki A, Takai K, et al. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers[J]. PLoS ONE, 2013, 8(12): e84335. [53]Vallabhajosula S, Goldsmith S J, Hamacher K A, et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen[J]. Journal of Nuclear Medicine, 2005, 46: 850. [54]http:∥www.businesswire.com/news/home/20111028005346/en/ATLAB-Pharma-BZL-Biologics-Announce-Exclusive-Global. [55]Tagawa S T, Milowsky M I, Morris M, et al. Phase Ⅱ study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer[J]. Clinical Cancer Research, 2013, 19: 5182-5191. [56]Calopedos R J S, Chalasani V, Asher R, et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis[J]. Prostate Cancer and Prostatic Diseases, 2017, 20: 352-360. [57]Batra J S, Niaz M J, Whang Y E, et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer[J]. Urologic Oncology: Seminars and Original Investigations, 2020, 38 (11): 848.e9-848.e16. [58]Baum R P, Smerling C, Schuchardt C, et al. Peptide-targeted radionuclide therapy (PTRT) using 177Lu FAP-2286 in diverse adenocarcinomas: first-in-human results, biodistribution and preliminary dosimetry estimations[J]. Nuklearmedizin, 2020, 59(2): 93. [59]Ballal S, Yadav M P, Moon E S, et al. First-in-human results on the biodistribution, pharmacokinetics, and dosimetry of [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2[J]. Pharmaceuticals, 2021, 14: 1212. [60]Reynolds T S, Bandari R P, Jiang Z, et al. Lutetium-177 labeled bombesin peptides for radionuclide therapy[J]. Current Radiopharmaceuticals, 2015, 9(1): 33-43. [61]Kurth J, Krause B J, Schwarzenbck S M, et al. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47: 123-135. [62]Kam B L R, Teunissen J J M, Krenning E P, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39(S1): S103-112. [63]Paganelli G, Sansovini M, Nicolini S, et al. 177Lu-PRRT in advanced gastrointestinal neuroendocrine tumors: 10-year follow-up of the IRST phase Ⅱ prospective study[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48: 152-160. [64]Zang J, Liu Q, Sui H, et al. 177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer[J]. Journal of Nuclear Medicine, 2020, 61 (12) : 1772-1778. [65]Arveschoug A K, Bekker A C, Oversensitive P, et al. Extravasation of[177Lu]Lu-DOTATOC: case report and discussion[J]. EJNMMI Research, 2020, 10: 68. [66]Zahid A, Johnson D R, Kizilbash S H, et al. Efficacy of 177Lu-Dotatate therapy in the treatment of recurrent Meningioma[J]. Mayo Clinic Pro Inn Qualities Out, 2021, 5(1): 236-240. [67]Parghane R V, Naik C, Talole S, et al. Clinical utility of 177Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity[J]. Head & Neck, 2020, 42(3): 401-416. [68]Benesova M, Schafer M, Bauder-Wust U, et al.Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer[J]. Journal of Nuclear Medicine, 2015, 56(6): 914-920. [69]Rahbar K, Boegemann M, Yordanova A, et al. PSMA targeted radioligandtherapy in metastatic castration resistant prostate cancer after chemotherapy, abiraterone and/or enzalutamide. A retrospective analysis of overall survival[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(9): 12-19. [70]Maffey-Steffan J, Scarpa L, Svirydenka A, et al. The 68Ga/177Lu-theragnostic concept in PSMA-targeting of metastatic castration-resistant prostate cancer: impact of post-therapeutic whole-body scintigraphy in the follow-up[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47: 695-712. [71]Grubmuller B, Baltzer P, Andrea D D, et al. 68Ga-PSMA 11 ligand PET imaging in patients with biochemical recurrence after radical prostatectomy diagnostic performance and impact on therapeutic decision-making[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(2): 235-242. [72]Denes B, Gardiner P. Comparison of 68Ga-PSMA-11 and 18F-fluciclovine PET/CT in a case series of 10 patients with prostate cancer recurrence: interesting, but far from definitive[J]. Journal of Nuclear Medicine, 2018, 59: 860. [73]Gafita A, Heck M M, Rauscher I, et al. Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer[J]. Journal of Nuclear Medicine, 2020, 61(10): 1476-1483. [74]Makvandi M, Dupis E, Engle J W, et al. Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations[J]. Targeted Oncology, 2018, 13(2): 189-203. [75]Mulford D A, Scheinberg D A, Jurcic J G, et al.[J]. Journal of Nuclear Medicine, 2005, 46 (Suppl. 1): 199S-204S. [76]Kratochwil C, Bruchertseifer F, Giesel F L, et al. 225Ac-PSMA-617 for PSMA-targeted α-Radiation therapy of metastatic castration-resistant prostate cancer[J]. Journal of Nuclear Medicine, 2016, 57: 1941-1944. [77]Khreish F, Ebert N, Dies M, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47: 721-728. [78]Zang J, Liu Q, Sui, et al. 177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer[J]. Journal of Nuclear Medicine, 2020, 61(12): 1772-1778. [79]Yadav M P, Ballal S, Beckel M, et al.[177Lu]Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results[J]. EJNMMI Res, 2020, 10: 30. |
[1] | 黄川, 文婧, 裴昌旭, 张庆华, 李英帼, 徐治国, 尹永智, 彭海波. 基于康普顿成像系统的碳离子治疗剂量监测研究[J]. 同位素, 2022, 35(4): 248-256. |
[2] | 裴昌旭, 文婧, 刘美楼, 郭典, 张庆华, 黄川, 李英帼, 尹永智, 陈熙萌. 自由结构PET在束监测碳离子治疗剂量成像过程研究[J]. 同位素, 2022, 35(4): 257-265. |
[3] | 高洁, 郑小北, 王红亮, 李建国, 张岚, 杜进. 放射性治疗药物的发展现状与展望[J]. 同位素, 2022, 35(3): 151-163. |
[4] | 廖伟, 付华霞, 李祥玉, 阚文涛, 杨夏, 王静, 赵鹏, 卓连刚, 杨宇川, 魏洪源. 寡聚苯乙炔修饰RM26的177Lu标记和细胞内化研究[J]. 同位素, 2022, 35(3): 200-208. |
[5] | 刘葳豪, 马欢, 李飞泽, 李鸿岩, 兰图, 廖家莉, 秦芝, 刘宁, 杨远友. 211At及131I标记尼妥珠单抗的荷瘤小鼠体内治疗研究[J]. 同位素, 2022, 35(3): 209-216. |
[6] | 卓连刚, 杨宇川, 岳海东, 熊晓玲, 王关全, 王海麟, 杨林, 林青川, 陈琪萍, 涂俊, 魏洪源. DGA树脂辅助的循环淋洗技术制备无载体镥[177Lu][J]. 同位素, 2022, 35(3): 217-223. |
[7] | 麻广宇, 巴建涛, 彭程, 陈英茂. 177Lu-DOTATATE治疗神经内分泌瘤患者对环境辐射安全的研究进展[J]. 同位素, 2022, 35(2): 128-134. |
[8] | 张云, 徐卓, 杨柳, 隋艳颖. 放射性同位素制品技术标准建设的现状与思考[J]. 同位素, 2022, 35(2): 144-150. |
[9] | 罗志福, 樊彩云, 李凤林, 陈宝军, 刘子华, 解清华. 针对新冠肺炎的放射性治疗药物研究[J]. 同位素, 2022, 35(1): 67-69. |
[10] | 穆博帅, 徐洋, 刘志博. 靶向PSMA放射性小分子药物研究进展[J]. 同位素, 2021, 34(6): 565-580. |
[11] | 张书峰, 李春娟, 宋明哲, 倪宁, 石斌, 刘蕴韬, 刁立军, 陈军, 肖鸿飞, 张庆贤, 唐新懿, 刘显科, 李林航, 李超, 曹平. 用于硼中子俘获疗法治疗束的光子谱仪设计[J]. 同位素, 2021, 34(5): 421-426. |
[12] | 黄立群, 李曙芳, 孙鸽, 刘欢, 李建国, 安全, 王仲文. 放射性核素的治疗应用及展望[J]. 同位素, 2021, 34(4): 412-420. |
[13] | 胡奇胜, 杨军. 质子重离子加速器治疗中感生放射性的测量与防护[J]. 同位素, 2021, 34(3): 215-220. |
[14] | 李波;罗宁;曾俊杰;吴建荣;贾致军;王磊;孙志中;陈云明;张劲松. 125I生产工艺研究进展与展望[J]. 同位素, 2020, 33(6): 366-373. |
[15] | 黄金铭;于宁文. 125I放射性粒子治疗癌症研究进展[J]. 同位素, 2020, 33(3): 186-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||