[1]Longo J, Lutz S, Johnstone C. Samarium-153-ethylene diamine tetramethylene phosphonate,a beta-emitting bone-targeted radiopharmaceutical, useful for patients with osteoblastic bone metastases[J]. Cancer Manag Res, 2013, 5: 235-242.
[2]Chirby D, Franck S, Troutner D E. Adsorption of 153Sm-EDTMP on calcium hydroxyapatite[J]. Radiat Isotopes, 1988,39: 495-499.
[3]Dolezal J, Vizda J, Odrazka K. Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer[J]. Urologia Internationalis, 2007, 78(1): 50-57.
[4]Goyal J, Antonarakis E S. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases[J]. Cancer Lett, 2012, 323: 135-146.
[5]Guerra Liberal F D C, Tavares A A S, Tavares J M R S. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153[J]. Appl Radiat Isot, 2016, 110: 87-99.
[6]Silberstein E B. Teletherapy and radiopharmaceutical therapy of painful bone metastases[J]. Semin Nucl Med, 2004, 35: 152-158.
[7]Silberstein E B. Systemic radiopharmaceutical therapy of painful osteoblastlc metastases[J]. Semin Radiat Oncol, 2000, 3: 240-249.
[8]Ota S, Toyama H, Uno M, et al. A trial of 89Sr bremsstrahlung SPECT[J]. Kaku Igaku, 2011, 48(2):101-107.
[9]Bedi M, King D M, Tutton S. Minimally invasive local treatments for bone and pulmonary metastases[J]. Minim Invasive Surg, 2014: 719394.
[10]Sartor O, Hoskin P, Bruland O S. Targeted radio-nuclide therapy of skeletal metastases[J]. Cancer Treat Rev, 2013, 39: 18-26.
[11]Reddy E K, Robinson R G, Mansfield C M. Strontium 89 for palliation of bone metastases[J]. J Natl Med Assoc, 1986, 78: 27-32.
[12]Bé M, Chisté V, Dulieu C, et al. Table of radionuclides[J]. R Soc Chem Dalt Trans, 2011: 4918-4928.
[13]Eriksen D , Ryningen B, Schoultz B W,et al.Liquid scintillation spectroscopy of 227 Ac and daughters[J]. J Anal Sci Methods Instrum, 2012, 2: 33-36.
[14]Goyal J, Antonarakis E S. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases[J]. Cancer Lett, 2012, 323: 135-146.
[15]Lewington V J. Bone-seeking radionuclides for therapy[J]. J Nucl Med, 2005,46(1): 38S-47S.
[16]El-Amm J, Freeman A, Patel N,et al. Bone-targeted therapies in metastatic castration-resistant prostate cancer: evolving paradigms[J]. Prostate Cancer, 2013, doi: 10.1155/2013/210686.
[17]Harrison M R, Wong T Z, Armstrong A J, et al. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease[J]. Cancer Manag Res, 2013, 5: 1-14.
[18]Nilsson S, Strangm P, Aksnes A K, et al. A randomized, dose-response, multicenter phase Ⅱ study of radium-223 chloride for the palliation of painful bone metastases in patients with castrationresistant prostate cancer[J]. Eur J Cancer, 2012,48: 678-686.
[19]Harrison M R, Wong T Z, Armstrong A J, et al. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease[J]. Cancer Manag Res, 2013, 5: 1-14.
[20]Giammarile F, Bodei L, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38(7): 1393-1406.
[21]Lin W Y, Tsai S C, Hsieh J F, et al. Effects of 90Y-microspheres on liver tumors: comparison of intratumoral injection method and intra-arterial injection method[J]. Journal of Nuclear Medicine, 2000, 41(11): 1892-1897.
[22]Riad S 1, Robert J L, Mary F M, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes[J]. J Gastro, 2010, 138(1): 52-64.
[23]郑丽丽,贾中芝,王斯妮,等. 钇-90微球放射栓塞治疗肝脏恶性肿瘤的不良反应和并发症——钇-90微球放射栓塞系列回顾(五)[J]. 介入放射学杂志,2018,27(2):190-196.
Zheng Lili, Jia Zhongzhi,Wang Sini,et al. Side effects and complications of yttrium-90 radioembolization therapy for hepatic malignancies. Aseries review of radioembolization with 90Y microspheres (part Ⅴ)[J].J Intervent Radiol, 2018, 27(2): 190-196(in Chinese).
[24]李莉,冯对平,李思进. 经肝动脉90Y放射性栓塞治疗的新进展[J]. 中华核医学与分子影像杂志,2018,38(8):573-581.
Li li, Feng Duiping, Li Sijin. New progress of 90Y transhepatic arterial radioembolization[J]. Chin J Nucl Medmol Imaging,2018, 38(8): 573-581(in Chinese).
[25]Mary Beth Riley A, Leo I, Gordon A. Efficacy and safety of radioimmuno-therapy with yttrium 90 ibritumomab tiuxetan (Zevalin)[J]. Semin Oncol Med, 2004, 20(Suppl 1): 4-9.
[26]Buchegger F, Antonescu C, Claudine H, et al. Six of 12 relapsed or refractory indolent lymphoma patients treated 10 years ago with 131I-tositumomab remain in complete remission[J]. J Nucl Med, 2011, 52: 896-900.
[27]刘琳,赵恒昌,张进安. 抗CD20单克隆抗体治疗自身免疫病研究进展[J]. 国际生物制品学杂志,2008,31(1):27.
Liu llin, Zhao Hengchang, Zhang Jinan. Rituximab for the treatment of autoimmune diseases[J]. International Journal Biologicals, 2008, 31(1): 27(in Chinese).
[28]梁文,谢丽萍,胡又佳. 肿瘤靶向抗体偶联物的研究进展[J]. 世界临床药物,2012,33(3):171-175.
Liang wen, Xie Liping, Hu Youjia. Research progress on conjugates of tumor targeting antibodies[J]. World Clinical Drugs,2012, 33(3): 171-175(in Chinese).
[29]Zheng Zhang, Huijie Bian, Qiang Feng, et al. Biodistribution and localization of iodine-131 labeled metuximab in patients with hepatocellular carcinoma[J]. Cancer Biol Ther, 2006, 5: 318-322.
[30]李云春,谭天秩,莫廷树,等. 131I-美妥昔单抗注射液的人体显像和组织分布[J]. 中华核医学杂志,2007,27(1):57-57.
Li Yunchun, Tan Tianyi, Mo Yanshu, et al. Human imaging and tissue distribution of 131I-metuximab injection[J]. Chinese Journal of Nuclear Medicine, 2007, 27(1): 57-57(in Chinese).
[31]姚征,陈玉堂,罗君,等. 131I美妥昔单抗注射液联合TACE治疗76例中晚期原发性肝癌的疗效及安全性研究[J]. 介入放射学杂志,2016,25(1):65-69.
Yao zheng, Chen Yutan, Luo jun, et al. Efficacy and safety of 131I metuximab injection combined with TACE in the treatment of 76 patients with advanced primary liver cancer[J]. Journal of Interventional Radiology, 2016, 25(1): 65-69(in Chinese).
[32]131I治疗分化型甲状腺癌指南(2014 版)[J]. 中华核医学与分子影像杂志,2014,34(4):264-278.
[33]Dash A, Pillai M R A, Knapp F F. Production of 177Lu for targeted radionuclide therapy: available options[J]. Nucl Med Mol Imaging, 2015, 49: 85-107.
[34]Strosberg J, El-Haddad G,Wolin E, et al. Phase 3 Trial of 177Lu-dotatate for midgut neuroendocrine tumors[J]. The New England Journal of Medicine, 2017, 376(2): 125-135.
[35]卜婷,张川,臧士明,等. 177Lu-PSMA-617治疗转移性前列腺癌的安全性和疗效[J]. 中华核医学与分子影像杂志,2019(2):81-85.
Bu Ting, Zhang chuan, Zang shiming, et al. (177) Safety and efficacy of LU-PMA-617 in the treatment of metastatic prostate cancer[J]. Chinese journal of Nuclear Medicine and Molecular Imaging, 2019(2): 81-85(in Chinese).
[36]温健男,程超,陈锐,等. 177Lu-PSMA-617治疗转移性去势抵抗性前列腺癌新进展[J]. 第二军医大学学报,2021,42(4):377-384.
Wen Jiannan, Cheng Chao, Chen Rui, et al. 177Lu-PMA-617 in the treatment of metastatic castration-resistant prostate cancer[J]. Journal of the Second Military Medical University, 2021, 42(4): 377-384(in Chinese).
[37]冯婷婷,成伟华,王斌,等. 177Lu标记放射性药物临床研究进展[J]. 标记免疫分析与临床,2018,25(11):1750-1756.
Feng Tingting, Cheng Weihua, Wang Bin, et al. The progress in clinical research of 177Lu-labeled radiopharmaceuticals[J]. Labeled Immunoassay and Clinical, 2018, 25(11): 1750-1756(in Chinese).
[38]张心怡,傅文会,徐婷婷,等. 国产177Lu标记PSMA-617的制备及初步生物学评价[J]. 中华核医学与分子影像杂志,2021,41(5):296-302.
Zhang Xinyi, Fu Wenhui, Xu Tingting, et al. Preparation and preliminary biological evaluation of domestic 177Lu marker PSMA-617[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2021, 41(5): 296-302(in Chinese).
[39]Ling X, Latoche J, Choy C, et al. Preclinical radiation dose optimization, dosimetry and maximum tolerated dose studies of Lu-177-labeled CTT1403, a phosphoramidate-based PSMA inhibitor for targeted radionuclide therapy of prostate cancer[J]. The Journal of Nuclear Medicine, 2018, 59: 135.
[40]Albrecht J, Exner A, Grotzinger C, et al. Multimodal imaging of 2-Cycle PRRT with 177Lu-DOTA-JR11 and 177Lu-DOTATOC in an orthotopic neuroendocrine xenograft tumor mouse Model[J]. J Nucl Med, 2021, 62(3): 393-398.
[41]Guenther T, Deiser S, Felber V, et al. Substitution of L-Trp by α-methyl-L-Trp in 177Lu-RM2 results in 177Lu-AMTG, a high affinity GRPR ligand with improved in vivo stability[J]. Journal of Nuclear Medicine, 2022, 63(4): 556-570.
[42]Dalm S U, Bakker I L, Blois E D, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology[J]. J Nucl Med, 2017, 58(2): 293-299.
[43]Kaloudi A, Lymperis E, Giarika A, et al. NeoBOMB1, a GRPR-Antagonist for breast cancer theragnostics: first results of a preclinical study with [67Ga]NeoBOMB1 in T-47D cells and tumor-bearing mice[J]. Molecules, 2017, 22(11): 1950.
[44]许颖. 内放射治疗肝细胞癌[J]. 世界临床药物,2011,32(12):742-747.
Xu Ying. Radionuclide therapy of hepatocellular carcinoma[J].World Clinical Drugs, 2011, 32(12): 742-747(in Chinese).
[45]Ehrhardt G J, Day D E. Therapeutic use of 90Y microspheres.[J]. International Journal of Radiation Applications & Instrumentation.part B.nuclear Medicine & Biology, 1987, 14(3):233-242.
[46]邱怀明,漆剑频. 90钇玻璃微球内放射治疗原发性肝癌的临床研究[J]. 放射学实践,2004,19(9):654-657.
Qiu Huaiming, Qi Jianpin. Interventional treatment of primary liver cancer with intrahepatic 90Y glass microspheres[J]. Radiol Practice, 2004, 19(9): 654-657(in chinese).
[47]Qiao T J, Sun G F. Study on microbial safety of ozone/biological activated carbon process[J]. China Water & Wastewater, 2008, 24(5): 31-39.
[48]李茂良,蔡继鸣,胡学正,等. 医用钇-90碳微球及其制备方法[P]. 中国:CN107715124B,2020-02-28.
[49]Hammer S, Hagemann U B, Zitzmann-Kolbe S, et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer[J]. Clinical Cancer Research, 2020, 26(8): 1985-1996.
[50]Hagemann U B, Wickstroem K, Hammer S, et al. Advances in precision oncology: Targeted thorium-227 conjugates as a new modality in targeted alpha therapy[J]. Cancer Biother Radiopharm, 2020, 35: 497.
[51]Linden O, Batea A T, Cunningham D, et al. 227Th-labeled anti-CD22 antibody (BAY 1862864) in relapsed/refractory CD22-positive non-hodgkin lymphoma: a first-in-human, phase I study Th-aCD22[J]. Clinical Trial, 2021, 36(8): 672-681.
[52]Yong K, Brechbiel M. Application of 212Pb for targeted α-particle therapy (TAT): Pre-clinical and mechanistic understanding through to clinical translation[J]. AIMS Medical Science, 2015, 2(3): 228.
[53]Couturier O, Supiot S, Degraef-Mougin M, et al. Cancer radioimmunotherapy with alpha-emitting nuclides[J]. Eur J Nucl Med Mol Imaging, 2005, 32(5): 601-14.
[54]Meredith R F, Torgue J, Azure M T, et al. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients[J]. Cancer Biother Radiopharm, 2014, 29(1): 12-7.
[55]Meredith R F, Torgue J J, Rozgaja T A, et al. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-Trastuzumab[J]. Am J Clin Oncol, 2018, 41(7): 716-721.
[56]Kasten B B, Gangrade A, Kim H, et al. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models[J]. Nucl Med Biol, 2018, 58: 67-73.
[57]Kasten B B, Arend R C, Katre A A, et al. B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models[J]. Nucl Med Biol, 2017, 47: 23-30.
[58]Stenberg V Y, Juzeniene A, Bruland, et al. In situ generated 212Pb-PSMA ligand in a 224Ra-solution for dual targeting of prostate cancer sclerotic stroma and PSMA-positive cells[J]. Curr Radiopharm, 2020,13(2): 130-141.
|