[1]Elvan B, Gulten A. Adsorption removal of strontium by binary minary mineral mitures of montmorillonite and zeolite[J]. Journal of Chemical And Engineering Data, 2010, 55: 783-789.
[2]El-Kamash A M. Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations[J]. Journal of Hazardous Materials, 2008, 151(2-3): 432-438.
[3]Risto K, Risto H, Jukka L. The effect of 0-100% Sn/Sb substitution on nickel uptake of tin antimonates[J]. Journal of Materials Chemistry, 2002, 12(12): 3615-3619.
[4]Vittorio L, Christopher S G, Mark G B, et al. Structure and ion exchange properties of nanocrystalline Si-doped antimony pyrochlore[J]. Journal of Materials Chemistry, 2005, 15(5): 564-569.
[5]Amanipour S, Faghihian H. Potassium hexacyanoferrate-clinoptilolite adsorbent for removal of Cs+ and Sr2+ from aqueous solutions[J]. International Journal of Environmental Studies, 2017, 74(1): 86-104.
[6]Li X L, Mu W J, Xie X, et al. Strontium adsorption on tantalum-doped hexagonal tungsten oxide[J]. Journal of Hazardous Materials, 2014, 264: 386-394.
[7]Zhao D D, Yu Y, Chen J P. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA[J]. Water Reseach, 2016, 101(SEP.15): 564-572.
[8]Zhang X, Qian J, Pan B. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environmental Science & Technology, 2016, 50: 881-887.
[9]Galambo M,Paucova V, Kufcakova J, et al. Cesium sorption on bentonites and montmorillonite K10[J]. Journal of Radioanalytical And Nuclear Chemistry, 2010, 284(1): 55-64.
[10]Shabana E I, ElDessouky M I. Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium[J]. Journal of Radioanalytical And Nuclear Chemistry, 2002, 253(2): 281-284.
[11]Abney C W, Gilhula J C, Lu K, et al. Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals[J]. Advanced Materials,2014, 26(47): 7993-7997.
[12]Yang H M, Lee K W, Seo B K, et al. Copper ferrocyanide functionalized magnetic nanoparticles for the selective removal of radioactive cesium[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1695-1699.
[13]Joshua L M, Fard Z H, Malliakas C D, et al. Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x=0.5-1) (KMS-2) relevant to nuclear waste remediation[J]. Chem Mater, 2013, 25(10): 2116-2127.
[14]Mu W J, Yu Q H, Li X L, et al. Highly efficient removal of radioactive 90Sr based on sulfonic acid functionalized α-zirconium phosphate nanosheets[J]. Chem Eng J, 2019, 361: 538-546.
[15]Mu W J, Yu Q H, Zhang R, et al. Controlled fabrication of flower-like alpha-zirconium phosphate for the efficient removal of radioactive strontium from acidic nuclear wastewater[J]. J Mater Chem A, 2017, 5(46): 24388-24395.
[16]Chang S Q, Chang L, Han W, et al. In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal[J]. J Radioanal Nucl Chem, 2018, 316(1): 209-219.
[17]Capitani D, Casciola M, Donnadio A, et al. High yield precipitation of crystalline α-zirconium phosphate from oxalic acid solutions[J]. Inorg Chem, 2010, 49(20): 9409-9413.
[18]Parajuli D, Takahashi A,Noguchi H, et al. Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination[J]. Chem Eng J, 2016, 283: 1322-1328.
[19]Pan B, Zhang Q, Du W, et al. Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism[J]. Water Research, 2007, 41(14): 3103-3111.
[20]Pan B, Chen X. Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water[J].Water Research, 2006, 40(15): 2938-2942.
[21]Dal Pont K, Gerard J F, Espuche E. Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposite[J]. Eur Polym J, 2012, 48(1): 217-227.
[22]Duan X, Li F, He J, et al. Some factors influencing the morphology of α-zirconium phosphate and its intercalation reactions with a bifunctional thioether amine[J]. J Pourous Mat, 2002, 9(1): 5-16.
[23]Takei T, Aoyama K, Yanagida S, et al. Circumstances of La, Eu, Dy, and Yb cations intercalated via ion exchange in γ-Zirconium phosphate[J]. Inorg Chem, 2018, 57(21): 13097-13102.
[24]Tan C, X Cao, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chem Rev, 2017, 117: 6225-6331.
[25]Geng L N, Li N. Preintercalation of layered γ-Zirconium phosphate for preparation of immobilized hemoglobin[J]. Chin Chem Lett, 2002, 13(8): 801-804.
[26]Prelot B, Ayed I, Marchandeau F, et al. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution[J]. Environ Sci Pollut Res, 2014, 21(15): 9334-9343.
[27]仝玉萍,霍洪媛,赵玉清. 层状磷酸锆的制备与插层行为[J]. 华北水利水电学院学报,2009,30(5):96-90.
Tong Yuping, Huo Hongyuan, Zhao Yuqing, Study on preparation and intercalation of layered zirconium phosphate[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2009, 30(5): 96-90(in Chinese).
[28]Brunet E, Alonso M, Cerro C, et al. A Luminescence and electrochemical study of photoinduced electron transfer within the layers of Zirconium phosphate[J]. Adv Funct Mater, 2007, 17(7): 1603-1610.
[29]Capitani D, Casciola M, Donnadio A, et al. High yield precipitation of crystalline α-zirconium phosphate from oxalic acid solutions[J]. Inorg Chem, 2010, 49(20): 9409-9413.
[30]Ernesto B, Manuel H, Juan C, et al. Covalent bonding of Aza-18-crown-6 to γ-zirconium phosphate. A new layered ion-exchanger with potential recognition capabilities[J]. Tetrahedron Letters,1994, 35(46): 8697-8700.
[31]Li D, Miao C, Wang X, et al. AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging[J]. Chem Commun, 2013, 49(83): 9549-9551.
[32]Mosby B M, Goloby M, Díaz A, et al. Clearfield. Designable architectures on nanoparticle surfaces: zirconium phosphate nanoplatelets as a platform for tetravalent metal and phosphonic acid assemblies[J]. Langmuir, 2014, 30(9): 2513-2521.
[33]Sillbernagel R, Martin C H, Clearfield A, Zirconium(Ⅳ) phosphonate-phosphates as efficient ion-exchange materials[J]. Inorg Chem, 2016, 55(4): 1651-1656.
[34]Hayashi A, Nakayama H, Eguchietal T. Adsorption of carboxylic acids by diethylenetriamine intercalation compound of α-Zr(HPO4)·H2O[J]. Mol Cryst and Liq Cryst, 2000, 341(2): 573-579.
[35]Nakayama H, Hayashi A, Eguchi T, et al. Adsorption of formaldehyde by polyamine-intercalated α-zirconium phosphate[J]. Solid State Sciences, 2002, 4(8): 1067-1070.
[36]Nakayama H, Hayashi A, Eguchi T, et al. Unusual adsorption mechanism for carboxylic acid gases by polyamine-intercalated α-zirconium phosphate[J]. J Mater Chem, 2002, 12(10): 3093-3099.
[37] Hayashi A, Nakayama H, Tsuhako M, Adsorption of phenol by alkylamine-intercalated α-zirconium phosphate[J]. Bull Chem Soc Jpn, 2003, 76(12): 2315-2318.
[38]Gentili P L, Costantino U, Nocchetti M, et al. A new photo-functional material constituted by a spirooxazine supported on a zirconium diphosphonate fluoride[J]. J Mater Chem, 2002, 12(10): 2872-2878.
[39]Pica M, Donnadio A, Troni E, et al. Looking for new hybrid polymer fillers: synthesis of nanosized α-type Zr(Ⅳ) organophosphonates through an unconventional topotactic anion exchange reaction[J]. Inorg Chem, 2013, 52(13): 7680-7688.
[40]Zhang X, Qian J, Pan B. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environ Sci Technol, 2016, 50: 881-887.
[41]Mu W J, Yu Q H, Gu J Y, et al. Bonding of crown ethers to α-Zirconium phosphate-novel layered adsorbent for radioactive strontium separation[J]. Sep Purif Technol, 2020, 240: 116 658-662.
[42]Zhang A Y, Hu Q H. Removal of cesium by countercurrent solvent extraction with a calix[4] crown derivative[J]. Sep Sci Technol, 2017, 52(10): 1670-1679.
[43]Liu Z, Zhou Y Q, Guo M, et al. Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent[J]. J Hazard Mater, 2019, 371: 712-720.
[44]Capitani D, Casciola M, Donnadio A, et al. High yield precipitation of crystalline α-zirconium phosphate from oxalic acid solutions[J]. Inorg Chem, 2010, 49(20): 9409-9413.
[45]Yakshin V V, Vilkova O M. New extraction system based on organphosphorus compounds and crown ethers in polyfluorinated alchol[J]. Doklady Chemistry, 2008, 419(1): 354-357.
[46]Ferragina C, Rocco R D, Giannoccaro P, et al. Intercalation of tris(2, 2′-bipyridyl)ruthenium(Ⅱ) in α- and γ- zirconium phosphate: synthesis, thermal behaviour and X-ray characterization[J]. J Incl Phenom, 2009, 63(1-2): 1-9.
[47]Lu T, Zhu Y, Wang W, et al. Polyaniline-functionalized porous adsorbent for Sr2+ adsorption[J]. J Radioanal Nucl Chem, 2018, 317: 907-917.
[48]Mu W J, Yu Q H, Gu J Y, et al. Bonding of crown ethers to α-zirconium phosphate-novel layered adsorbent for radioactive strontium separation[J]. Sep Purif Technol, 2000, 240: 116 658-662.
[49]Gui D X, Dai X, Tao Z T, et al. Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity[J]. J Am Chem Soc, 2018, 140(19): 6146-6151.
[50]Clearfield A, Poojary D M, Zhang B, et al. Azacrown ether pillared layered zirconium phosphonates and the crystal structure of N,N-Bis(phosphonomethyl)-1,10-diaza-18-crown-6[J]. Chem Mater, 2000, 12(9): 2745-2752.
[51]Yakshin V V, Vilkova O M. New extraction system based on organphosphorus compounds and crown ethers in polyfluorinatedalchol[J]. Doklady Chemistry, 2008, 419(1): 354-357.
[52]何龙海,翁锡瑂,杨大勋,等. 冠醚萃取法从高放废液中去除锶[J]. 核科学与工程,1994,14(4):350-357.He Longhai,WengXimei, Yang Daxiong, et al. Sr removal from high level liquid wastewater[J]. Chinese Journal of Nuclear Science and Engineering, 1994, 14(4): 350-357(in Chinese).
[53]杨群,韩延德,刘大鸣. 硝酸介质中冠醚萃取Sr2+的研究[J]. 环境科学与技术,1996,1(1):7-9.
Yang Qun, Han Yande, Liu Daming, Extraction of Sr2+ by crown ether in HNO3 media[J]. Environmental Science and Technology, 1996, 1(1): 7-9(in Chinese).
[54]张进琪,刘云,邹惠仙. 冠醚-膨润土的制备、表征及吸附性能研究[D]∥中国化学会全国第十三届大环化学暨第五届超分子化学学术讨论会论文选集. 2006.
[55]Schulz W W, Bray L A. Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solution-A technology review and assessment[J]. Sep Sci Technol,1987, 22(2-3): 191-196.
[56]Kijima T, Ueno S, Goto M. Uptake of amino acids by zirconium phosphates. Part 2. Intercalation of L-histidine, L-lysine, and L-arginine by α-zirconium phosphate[J]. J Chem Soc, 1982(12): 61-65
[57]Ernesto B, Manuel H, Juan C, et al. Covalent bonding of Aza-18-crown-6 to γ-zirconium phosphate. A new layered ion-exchanger with potential recognition capabilities[J]. Tetrahedron Letters, 1994, 35(46): 8697-8700.
[58]Bao L Z, Damodara M P, Abraham C, synthesis, characterization, and amine intercalation behavior of zirconium N-(Phosphonomethl)iminodaicetic acid layered compounds[J]. Chem Mater, 1996, 8(6): 1333-1340.
[59]Liu L M, Shen B, Shi J, et al. A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of α-zirconium phosphate[J]. Bioelectron, 2010, 25(12): 2627-2632.
[60]Ma J, Zhang Y, Ouyang J, et al. A facile preparation of dicyclohexano-18-crown-6 ether impregnated titanate nanotubes for strontium removal from acidic solution[J]. Solid State Sci, 2019, 90: 49-55.
[61]Dal Pont K, Gerard J F, Espuche E. Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites[J]. Eur Polym J, 2012, 48(1): 217-227. |