[1]Madunic I V, Madunic J, Breljak D, et al. Sodium-glucose cotransporters: new targets of cancer therapy?[J]. Arh Hig Rada Toksikol,2018,69(4):278-285.
[2]Li Y, Jiang J, Lu J, et al. Radiomics: a novel feature extraction method for brain neuron degeneration disease using 18F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment[J]. Ther Adv Neurol Disord, 2019, 12: 1278060250.
[3]Muzic R J, Chandramouli V, Huang H M, et al. Human radiation dosimetry of 6-[18F]FDG predicted from preclinical studies[J]. Med Phys, 2014, 41(3): 31 910.
[4]Tahara N, Mukherjee J, de Haas H J, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis[J]. Nat Med, 2014, 20(2): 215-219.
[5]BakFredslund K P, Lykke E P, Munk O L, et al. Metabolic liver function in humans measured by 2-18F-fluoro-2-deoxy-D-galactose PET/CT-reproducibility and clinical potential[J]. EJNMMI Res, 2017, 7(1): 71.
[6]Geisler S, Stegmayr C, Niemietz N, et al. Treatment-related uptake of O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-(3)H]-methionine after tumor resection in rat glioma models[J]. J Nucl Med, 2019. DOI: 10.2967/jnumed.119.225680.
[7]Mansoor N M, Thust S, Militano V, et al. PET imaging in glioma: techniques and current evidence[J]. Nucl Med Commun, 2018, 39(12): 1064-1080.
[8]Sommerauer M, Galldiks N, Barbe M T, et al. Cis-4-[18F]fluoro-D-proline detects neurodegeneration in patients with akinetic-rigid parkinsonism[J]. Nucl Med Commun, 2019, 40(4): 383-387.
[9]Verhoeven J, Hulpia F, Kersemans K, et al. New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma[J]. Sci Rep, 2019, 9(1): 2878.
[10]Pena P F, Moreno J, Jimenez A F, et al. Diverse behavior in 18F-Fluorocholine PET/CT of brain tumors in patients with neurofibromatosis type 1[J]. Clin Nucl Med, 2019, 44(8): e472-e476.
[11]Estrade T L, Hansen H D, Erlandsson M, et al. Classics in Neuroimaging: the serotonergic 2A receptor system-from discovery to modern molecular imaging[J]. ACS Chem Neurosci,2018, 9(6): 1226-1229.
[12]Nikaki A, Papadopoulos V, Valotassiou V, et al. Evaluation of the performance of 18F-fluorothymidine positron emission tomography/computed tomography (18F-FLT-PET/CT) in metastatic brain lesions[J]. Diagnostics (Basel), 2019, 9(1) .DOI: 10.3390/diagnostics9010017.
[13]Liu Y, Yang Y, Sun M, et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer[J]. Chem Sci, 2017, 8(4): 2710-2716.
[14]Lewis D Y, Mair R, Wright A, et al. [18F]fluoroethyltyrosine-induced cerenkov luminescence improves image-guided surgical resection of glioma[J]. Theranostics, 2018, 8(14): 3991-4002.
[15]Stenkrona P, Matheson G J, Cervenka S, et al. [11C]SCH23390 binding to the D1-dopamine receptor in the human brain-a comparison of manual and automated methods for image analysis[J]. EJNMMI Res, 2018, 8(1): 74.
[16]Kosaka J, Takahashi H, Ito H, et al. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia[J]. Life Sci, 2010, 86(21-22): 814-818.
[17]Hamilton J P, Sacchet M D, Hjornevik T, et al. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation[J]. Transl Psychiatry, 2018, 8(1): 264.
[18]Mitelman S A, Buchsbaum M S, Christian B T, et al. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects[J]. Brain Imaging Behav, 2018. DOI: 10.1007/s11682-018-0012-0.
[19]Nabulsi N B, Holden D, Zheng M Q, et al. Evaluation of 11C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates[J]. J Nucl Med, 2019. DOI: 10.2967/jnumed.118.222034.
[20]Savitz J B, Drevets W C. Neuroreceptor imaging in depression[J]. Neurobiol Dis, 2013, 52: 49-65.
[21]Coughlin J, Du Y, Crawford J L, et al. The availability of the alpha7 nicotinic acetylcholine receptor in recent-onset psychosis: a study using 18F-ASEM PET[J]. J Nucl Med, 2018. DOI: 10.2967/jnumed. 118. 213686.
[22]Hillmer A T, Zheng M Q, Li S, et al. PET imaging evaluation of [18F]DBT-10, a novel radioligand specific to alpha7 nicotinic acetylcholine receptors, in nonhuman primates[J]. Eur J Nucl Med Mol Imaging, 2016, 43(3): 537-547.
[23]Savitz J B, Drevets W C. Neuroreceptor imaging in depression[J]. Neurobiol Dis, 2013, 52: 49-65.
[24]Lerond J, Lothe A, Ryvlin P, et al. Effects of aripiprazole, risperidone, and olanzapine on 5-HT1A receptors in patients with schizophrenia[J]. J Clin Psychopharmacol, 2013, 33(1): 84-89.
[25]Liow J S, Zoghbi S S, Hu S, et al. 18F-FCWAY, a serotonin 1A receptor radioligand, is a substrate for efflux transport at the human bloodbrain barrier[J]. Neuroimage, 2016, 138: 134-140.
[26]Yatham L N, Liddle P F, Lam R W, et al. Effect of electroconvulsive therapy on brain 5-HT2 receptors in major depression[J]. Br J Psychiatry, 2010, 196(6): 474-479.
[27]Meyer P T, Bhagwagar Z, Cowen P J, et al. Simplified quantification of 5-HT2A receptors in the human brain with [11C]MDL 100,907 PET and non-invasive kinetic analyses[J]. Neuroimage, 2010, 50(3): 984-993.
[28]Landau A M, Alstrup A, Noer O, et al. Electroconvulsive stimulation differentially affects [11C]MDL100,907 binding to cortical and subcortical 5HT2A receptors in porcine brain[J]. J Psychopharmacol, 2019: 1740142540.
[29]Lindberg A, Nag S, Schou M, et al. [11C]AZ10419096 -a full antagonist PET radioligand for imaging brain 5-HT1B receptors[J]. Nucl Med Biol, 2017, 54: 34-40.
[30]Tyacke R J, Nutt D J. Optimising PET approaches to measuring 5-HT release in human brain[J]. Synapse, 2015, 69(10): 505-511.
[31]Mc M B, Norgaard M, Svarer C, et al. Seasonality-resilient individuals downregulate their cerebral 5-HT transporter binding in winter-A longitudinal combined 11C-DASB and 11C-SB207145 PET study[J]. Eur Neuropsychopharmacol, 2018, 28(10): 1151-1160.
[32]Hazari P P, Pandey A, Chaturvedi S, et al. New trends and current status of positron-emission tomography and single-photon-emission computerized tomography radioligands for neuronal serotonin receptors and serotonin transporter[J]. Bioconjug Chem, 2017, 28(11): 2647-2672.
[33]Hammers A, Asselin M C, Hinz R, et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures[J]. Brain, 2007, 130(Pt 4): 1009-1016.
[34]Joshi A, Fessler J A, Koeppe R A. Improving PET receptor binding estimates from Logan plots using principal component analysis[J]. J Cereb Blood Flow Metab, 2008, 28(4): 852-865.
[35]Li S, Zheng M Q, Naganawa M, et al. Novel kappa opioid receptor agonist as improved PET radiotracer: development and in vivo evaluation[J]. Mol Pharm, 2019, 16(4): 1523-1531.
[36]Yang L, Brooks A F, Makaravage K J, et al. Radiosynthesis of [11C]LY2795050 for preclinical and clinical PET imaging using Cu(Ⅱ)-Mediated cyanation[J]. ACS Med Chem Lett, 2018, 9(12): 1274-1279.
[37]Pecina M, Zubieta J K. Expectancy modulation of opioid neurotransmission[J]. Int Rev Neurobiol, 2018, 138: 17-37.
[38]Theodore W H. Presurgical focus localization in epilepsy: PET and SPECT[J]. Semin Nucl Med, 2017, 47(1): 44-53.
[39]Urfer R, Moebius H J, Skoloudik D, et al. Phase II trial of the sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke[J]. Stroke, 2014, 45(11): 3304-3310.
[40]Jia H, Zhang Y, Huang Y. Imaging sigma receptors in the brain: new opportunities for diagnosis of Alzheimer’s disease and therapeutic development[J]. Neurosci Lett, 2019, 691: 3-10.
[41]Krishnan H S, Bernard-Gauthier V, Placzek M S, et al. Metal protein-attenuating compound for PET neuroimaging: synthesis and preclinical evaluation of [11C]PBT2[J]. Mol Pharm, 2018, 15(2): 695-702.
[42]Baskin A, Buchegger F, Seimbille Y, et al. PET molecular imaging of hypoxia in ischemic stroke: an update[J]. Curr Vasc Pharmacol, 2015, 13(2): 209-217.
[43]Smith R, Schain M, Nilsson C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy[J]. Mov Disord, 2017, 32(1): 108-114.
[44]Ishiki A, Harada R, Okamura N, et al. Tau imaging with [18F]THK5351 in progressive supranuclear palsy[J]. Eur J Neurol, 2017, 24(1): 130-136.
[45]George N, Gean E G, Nandi A, et al. Advances in CNS imaging agents: focus on PET and SPECT tracers in experimental and clinical use[J]. CNS Drugs, 2015, 29(4): 313-330.
[46]Funck T, Al-Kuwaiti M, Lepage C, et al. Assessing neuronal density in peri-infarct cortex with PET: effects of cortical topology and partial volume correction[J]. Hum Brain Mapp, 2017, 38(1): 326-338.
[47]Warnock G I, Aerts J, Bahri M A, et al. Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain[J]. J Nucl Med, 2014, 55(8): 1336-1341.
[48]Mercier J, Provins L, Valade A. Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications[J]. Drug Discov Today Technol, 2017, 25: 45-52.
[49]Sakata M, Toyohara J, Ishibashi K, et al. Age and gender effects of 11C-ITMM binding to metabotropic glutamate receptor type 1 in healthy human participants[J]. Neurobiol Aging, 2017, 55: 72-77.
[50]Sato H, Ito C, Hiraoka K, et al. Histamine H1 receptor occupancy by the new-generation antipsychotics olanzapine and quetiapine: a positron emission tomography study in healthy volunteers[J]. Psychopharmacology (Berl), 2015, 232(19): 3497-3505.
[51]Ernst D, Widera C, Weiberg D, et al. Beta-1-Adrenergic receptor antibodies in acute coronary syndrome: is less sometimes more?[J]. Front Cardiovasc Med, 2018, 5: 170.
[52]Cui L B, Liu L, Wang H N, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy[J]. Schizophr Bull, 2018, 44(5): 1053-1059.
[53]Skachokova Z, Martinisi A, Flach M, et al. Cerebrospinal fluid from Alzheimer’s disease patients promotes tau aggregation in transgenic mice[J]. Acta Neuropathol Commun, 2019, 7(1): 72.
[54]Kikuchi T, Okamura T, Zhang M R, et al. PET probes for imaging brain acetylcholinesterase[J]. J Labelled Comp Radiopharm, 2013, 56(3-4): 172-179.
[55]Waterhouse R N, Chang R C, Atuehene N, et al. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand[18F]FPS[J]. Synapse, 2007, 61(7): 540-546.
[56]Kitamura Y, Kozaka T, Miwa D, et al. Synthesis and evaluation of a new vesamicol analog o-[11C]methyl-trans-decalinvesamicol as a PET ligand for the vesicular acetylcholine transporter[J]. Ann Nucl Med, 2016, 30(2): 122-129.
[57]Hong C M, Ryu H S, Ahn B C. Early perfusion and dopamine transporter imaging using 18F-FP-CIT PET/CT in patients with parkinsonism[J]. Am J Nucl Med Mol Imaging, 2018, 8(6): 360-372.
[58]Huang X, Xiao X, Gillies R J, et al. Design and automated production of 11C-alpha-methyl-l-tryptophan (11C-AMT)[J]. Nucl Med Biol, 2016, 43(5): 303-308.
[59]Hazari P P, Pandey A, Chaturvedi S, et al. New trends and current status of positron-emission tomography and single-photon-emission computerized tomography radioligands for neuronal serotonin receptors and serotonin transporter[J]. Bioconjug Chem, 2017, 28(11): 2647-2672.
[60]Lillethorup T P, Glud A N, Alstrup A, et al. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs[J]. Exp Neurol, 2018, 303: 142-152.
[61]Nikolaus S, Muller H W, Hautzel H. Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder[J]. Nuklearmedizin, 2017, 56(5): 191-200.
[62]Zou J, Weng R H, Chen Z Y, et al. Position emission tomography/single-photon emission tomography neuroimaging for detection of premotor parkinson’s disease[J]. CNS Neurosci Ther, 2016, 22(3): 167-177.
[63]Baskin A, Buchegger F, Seimbille Y, et al. PET molecular imaging of hypoxia in ischemic stroke: an update[J]. Curr Vasc Pharmacol, 2015, 13(2): 209-217. |