[1]Thomas B, David W T, Tony B. A combined PET/CT scanner for clinical oncology[J]. J Nucl Med, 2000, 41: 1369-1379.
[2]Adams H J A, Klerk J M H, Fijnheer R, et al. Prognostic superiority of the national comprehensive cancer network international prognostic index over pretreatment whole-body volumetric-metabolic FDG-PET/CT metrics in diffuse large B-cell lymphoma[J]. Eur J Haematol, 2015, 94: 532-539.
[3]Dave S R, Samuel T A, Pucar D,et al. FDG PET/CT in evaluation of unusual cutaneous manifestations of breast cancer[J]. Clin Nucl Med, 2015, 40: 63-67.
[4]Giovannini E, Lazzeri P, Milano A. et al. Clinical applications of choline PET/CT in brain tumors[J]. Current Pharmaceutical Design, 2015, 21(1): 121-127.
[5]Jauw Y W S, Hoekstra O S, Hendrikse N H, et al. Immuno-positron emission tomography with Zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials?[J]. Front Pharmacol, 2016, 7: 131.
[6]Lamberts T E, Menkevan C W, Ter Weele E J, et al. ImmunoPET with anti-mesothelin antibody in patients with pancreatic and ovarian cancer before anti-mesothelin antibody-drug conjugate treatment[J]. Clinical Cancer Research, 2015, 22(7): 1642-1652.
[7]Fischer G, Seibold U, Schirrmacher R, et al. 89Zr, a radiometal nuclide with high potential fomolecular imaging with PET: chemistry, applications and remaining challenges[J]. Molecules, 2013, 18(6): 6469-6490.
[8]Fc V D W, Rijpkema M, Perk L, et al. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients[J]. Biomed Research International, 2014(10-12): 203 601.
[9]Holland J P, Williamson M J, Lewis J S. Unconventional nuclides for radiopharmaceuticals[J]. Molecular imaging, 2010, 9(1): 1-20.
[10]Lubberink M, Herzog H. Quantitative imaging of I-124 and Y-86 with PET[J]. Eur J Nucl Med Mol I, 2011, 38: 10-18.
[11]Tang Y, Li S, Yang Y, et al. A simple and convenient method for production of 89Zr with high purity[J]. Applied Radiation and Isotopes, 2016, 118: 326-330.
[12]Tang L. Radionuclide production and yields at Washington University School of Medicine[J]. Q J Nucl Med Mol Imaging, 2008, 52(2): 121-133.
[13]Dabkowski A M, Probst K, Marshall C. Cyclotron production for the radiometal Zirconium-89 with an IBA cyclone 18/9 and COSTIS solid target system (STS)[J]. Christopher Marshall, 2012, 1509(1): 108-113.
[14]Meijs W E, Herscheid J D M, Haisma H J, et al. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter[J]. Appl Radiat Isot, 1994, 45(12): 1143-1147.
[15]Wadas T J, Wong E H, Weisman G R, et al. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease[J]. Chem Rev, 2010, 110(5): 2858.
[16]Ciarmatori A, Cicoria G, Pancaldi D, et al. Some experimental studies on 89Zr production[J]. International Journal for Chemical Aspects of Nuclear Science & Technology, 2011, 99(10): 1-4.
[17]Infantino A, Cicoria G, Pancaldi D, et al. Prediction of 89Zr production using the Monte Carlo code FLUKA[J]. Applied Radiation and Isotopes, 2011, 69(8): 1134-1137.
[18]Zweit J, Downey S, Sharma H L. Production of no-carrier-added zirconium-89 for positron emission tomography[J]. International Journal of Radiation Applications & Instrumentation part Applied Radiation & Isotopes, 1991, 42(2): 199-201.
[19]Vosjan M J W D, Perk L R, Visser G W M, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine[J]. Nat Protoc, 2010, 5: 739-743.
[20]Yin Z, Hao H, Cai W. PET tracers based on zirconium-89[J]. Curr Radiopharm,2011, 4(2): 131-139.
[21]Meijs W E, Haisma H J, Vander S R, et al. A facile method for the labeling of proteins with zirconium isotopes[J]. Nucl Med Biol, 1996, 23: 439-448.
[22]Verel I, Visser G W M, Boellaard R, et al. Zr-89 immuno-PET: comprehensive procedures for the production of Zr-89-labeled monoclonal antibodies[J]. J Nucl Med,2003, 44: 1271-1281.
[23]Perk L R, Vosjan M J W D, Visser G W M, et al. P-isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2010, 37(2): 250-259.
[24]Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future[J]. J Clin Invest, 2015, 125(9): 3384-3391.
[25]Perk L R, Visser O J, Stigter-van W M, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33(11): 1337-1345.
[26]Yeh H H, Ogawa K, Balatoni J,et al. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1603-1608.
[27]Heuveling D A, Visser G W M, Baclayon M, et al. Zr-89-Nanocolloidal albuminbased PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results[J]. J Nucl Med,2011, 52: 1580-1584.
[28]Keliher E J, Yoo J, Nahrendorf M, et al. 89Zr labeled dextran nanoparticles allow in vivo macrophage imaging[J]. Bioconjug Chem, 2015, 22(12): 2383-2389.
[29]Avila-Rodriguez M A, Selwyn R G, Hampel J A, et al. Positron-emitting resin microspheres as surrogates of Y-90 SIR-Spheres: a radiolabeling and stability study[J]. Nucl Med Biol, 2007, 34: 585-590.
[30]Ruggiero A, Villa C H, HollandJ, et al. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes[J]. Int J Nanomed, 2010, 5: 783-802.
[31]Abou D S, Thorek D L, Ramos N N,et al. 89Zr-Labeled paramagnetic octreotide-liposomes for PETMR imaging of cancer[J]. Pharm Res, 2013, 30: 878-888. |