[1]Lau J, Zhang Z, Jenni S, et al. PET imaging of carbonic anhydrase IX expression of HT-29 tumor xenograft mice with 68Ga-labeled benzene sulfonamides[J]. Molecular Pharmaceutics, 2016, 13(3): 1137-1146.
[2]Dimitrakopouloustrauss A. PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome[J]. Future Oncology, 2015, 11(7): 1083-1091.
[3]Tan E H, Goh S W. Exploring new frontiers in molecular imaging: Emergence of Ga PET/CT[J]. World Journal of Radiology, 2010, 2: 55-67.
[4]Anger H O, Gottschalk A. Localization of brain tumors with the positron scintillation camera[J]. Journal of Nuclear Medicine, 1963, 4: 326-330.
[5]Ido T, Wan C N, Casella V. Labeled 2-deoxy-D-glucose analogs: 18F-labeled 2-deoxy-2-fluoro-D-mannose, and 14C-2-deoxy-2-fluoro-D-glucose[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 1978, 14: 175-183.
[6]Banerjee S R, Pomper M G. Clinical applications of gallium-68[J]. Applied Radiation & Isotopes, 2013, 76: 2-13.
[7]Maecke H R, Hofmann M, Haberkorn U. 68Ga labeled peptides in tumor imaging[J]. Journal of Nuclear Medicine, 2005, 46(Suppl 1): 172S-178S.
[8]Gleason G I. A positron cow[J]. International Journal of Applied Radiation & Isotopes, 1960, 8: 90-94.
[9]Kopeck Y' P, Mudrová B, Svoboda K. The study of conditions for the preparation and utilization of 68Ge/68Ga generator[J]. International Journal of Applied Radiation& Isotopes, 1973, 24: 73-80.
[10]王中央,范我,牛芳,等. 锗-68-镓-68同位素发生器[J]. 原子能科学技术,1980,22(2):183-183.Wang zhongyang, Fan Wo, Niu Fang, et al. 68Ge/68Ga generators[J]. Atomic Energy Science and Technology, 1980, 22(2): 183-183(in Chinese).
[11]Velikyan I. 68Ga Based radiopharmaceuticals: production and application relationship[J]. Molecules, 2015, 20: 12913-12943.
[12]Ferreira C L, Yapp D T, Mandel D, et al. 68Ga small peptide imaging: comparison of NOTA and PCTA[J]. Bioconjugate Chemistry, 2012, 23: 2239-2246.
[13]Boros E, Ferreira C L, Cawthray J F, et al. Acyclic chelate with ideal properties for 68Ga PET imaging agent elaboration[J]. Journal of the American Chemical Society, 2010, 132: 15726-15733.
[14]Dumont R A, Deininger F, Haubner R, et al. Novel 64Cu and 68Ga-labeled RGD conjugates show improved PET imaging of 3 integrin expression and facile radiosynthesis[J]. Journal of Nuclear Medicine, 2011, 52: 1276-1284.
[15]Knetsch P A, Petrik M, Griessinger C M, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38: 1303-1312.
[16]Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-Based PET-radiopharmaceuticals at room temperature[J]. Bioconjugate Chemistry, 2008, 19: 569-573.
[17]Jakub Š, Hermann P, Wester H J, et al. How is 68Ga labeling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates?[J]. Chemmedchem, 2013, 8: 95-103.
[18]陈文,魏洪源,周志军,等. 金属正电子核素64Cu,68Ga, 86Y, 89Zr的PET标记药物研究进展[J]. 同位素,2017,30(1):78-88.Chen Wen, Wei Hongyuan, Zhou Zhijun, et al. Positron emission radiometals64Cu, 68Ga, 86Y and 89Zr labeled PET drugs[J]. Journal of Isotopes, 2017, 30(1): 78-88(in Chinese).
[19]Paeng J C, Lee Y S, Lee J S, et al. Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging[J]. Annals of Nuclear Medicine, 2013, 27(9): 847-854.
[20]江雪清,王明召. 潜在放射性药物——镓配合物的研究进展[J]. 化学试剂,2014,36:705-712.Jiang Xueqing, Wang Mingzhao. Progress on potential radiopharmaceuticals-Gallium complexes[J]. Chemical Reagents, 2014, 36: 705-712(in Chinese)..
[21]Asti M, Pietri G D, Fraternali A, et al. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC[J]. Nuclear Medicine & Biology, 2008, 35: 721-724.
[22]Zhernosekov K P, Filosofov D V, Baum R P, et al. Processing of generator-produced 68Ga for medical application[J]. Journal of Nuclear Medicine, 2007, 48: 1741-1748.
[23]Prata M I. Gallium-68: a new trend in PET radiopharmacy[J]. Current Radiopharmaceuticals, 2012, 5: 142-149.
[24]Breeman W A P, Blois E D, Chan H S, et al. 68Ga-labeled DOTA-peptides and 68Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives[J]. Seminars in Nuclear Medicine, 2011, 41: 314-321.
[25]Smith D L, Breeman W A P, Sims-Mourtada J. The untapped potential of Gallium 68-PET: the next wave of 68Ga-agents[J]. Applied Radiation & Isotopes, 2013, 76: 14-23.
[26]Hofmann M, Maecke H, Börner A, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28: 1751-1757.
[27]Shetty D, Lee Y S, Jeong J M. 68Ga-labeled radiopharmaceuticals for positron emission tomography[J]. Nuclear Medicine and Molecular Imaging, 2010, 44: 233-240.
[28]Li D, Zhao X, Zhang L, et al. 68Ga-PRGD 2 PET/CT in the evaluation of glioma: A prospective study[J]. Molecular Pharmaceutics, 2014, 11: 3923-3929.
[29]Chen H, Gang N, Hua W, et al. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3[J]. Theranostics, 2016, 6: 78-92.
[30]Li Z B, Chen K, Chen X. 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35: 1100-1108.
[31]Liu Z, Niu G, Shi J, et al. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36: 947-957.
[32]Blom E, Velikyan I, Estrada S, et al. 68Ga-Labeling of RGD peptides and biodistribution[J]. International Journal of Clinical & Experimental Medicine, 2012, 5: 165-172.
[33]Dijkgraaf I, Yim C B, Franssen G M, et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono, di- and tetrameric RGD peptides[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38: 128.
[34]Haukkala J, Laitinen I, Luoto P, et al. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36: 2058-2067.
[35]Eleni G, Oliver D, Margret S, et al. PET of CXCR4 expression by a 68Ga labeled highly specific targeted contrast agent[J]. Journal of Nuclear Medicine, 2011, 52: 1803-1810.
[36]Poschenrieder A, Schottelius M, Schwaiger M, et al. Preclinical evaluation of [68Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo a comparison to [68Ga]pentixafor[J]. EJNMMI Research, 2016, 6: 70-74.
[37]Oliver D, Eleni G, Udo S, et al. PET imaging of CXCR4 receptors in cancer by a new optimized ligand[J]. Chemmedchem, 2011, 6: 1789-1791.
[38]Poty S, Gourni E, Désogère P, et al. AMD3100: a versatile platform for CXCR4 targeting 68Ga-based radiopharmaceuticals[J]. Bioconjugate Chemistry, 2016, 27: 752-761.
[39]Hyafil F, Pelisek J, Laitinen I, et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga pentixafor for PET[J]. Journal of Nuclear Medicine, 2017, 58: 499-506.
[40]Gourni E, Mansi R, Jamous M, et al. N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging[J]. Journal of Nuclear Medicine, 2014, 55: 1719-1725.
[41]Fani M, Wang X, Nicolas G, et al. Development of new folate-based PET radiotracers: preclinical evaluation of 68Ga-DOTA-folate conjugates[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38: 108-119.
[42]Müller C, Vlahov I R, Santhapuram H K R, et al. Tumor targeting using 67Ga-DOTA-Bz-folate—investigations of methods to improve the tissue distribution of radiofolates[J]. Nuclear Medicine & Biology, 2011, 38: 715-723.
[43]Fani M, Tamma M L, Nicolas G P, et al. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates[J]. Molecular Pharmaceutics, 2012, 9: 1136-1145.
[44]Mathias C J, Lewis M R, Reichert D E, et al. Preparation of 66Ga- and 68Ga-labeled Ga(Ⅲ)-deferoxamine folate as potential folate-receptor-targeted PET radiopharmaceuticals[J]. Nuclear Medicine & Biology, 2003, 30: 725-731.
[45]Zhang J, Lang L, Zhu Z, et al. Clinical translation of an albuminbinding PET radiotracer 68Ga-NEB[J]. Journal of Nuclear Medicine, 2015, 56: 1609-1614.
[46]Zhang W, Wu P, Li F, et al. Potential applications of using 68Ga-evans blue PET/CT in the evaluation of lymphatic disorder: preliminary observations[J]. Clinical Nuclear Medicine, 2016, 41: 302-308.
[47]Liu Z, Niu G, Wang F, et al. 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36: 1483-1494.
[48]Liu Z, Yan Y, Liu S, et al.18F, 64Cu, and 68Ga-labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer[J]. Bioconjugate Chemistry, 2009, 20: 1016-1025.
[49]Yang Z, Xiong C, Zhang R, et al. Synthesis and evaluation of 68Ga-labeled DOTA-2-deoxy-D-glucosamine as a potential radiotracer in μPET imaging[J]. American Journal of Nuclear Medicine and Molecular Imaging, 2012, 2: 499-507.
[50]Notni J, Hermann P, Dregely I, et al. Convenient synthesis of 68Ga-labeled gadolinium(Ⅲ) complexes: towards bimodal responsive probes for functional imaging with PET/MRI[J]. Chemistry, 2013, 19: 12602-12606.
[51]Eriksson O, Carlsson F, Blom E, et al. Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation[J]. Nuclear Medicine & Biology, 2012, 39: 415-421.
[52]Banerjee S R, Chen Z, Pullambhatla M, et al. Preclinical comparative study of 68Ga-Labeled DOTA, NOTA, and HBED-CC chelated radiotracers for targeting PSMA[J]. Bioconjugate Chemistry, 2016, 27: 1447-1455.
[53]Hoigebazar L, Jaemin J, Sooyoung C, et al. Synthesis and characterization of nitroimidazole derivatives for 68Ga-labeling and testing in tumor xenografted mice[J]. Journal of Medicinal Chemistry, 2010, 53: 6378-6385.
[54]Fernández S, Dematteis S, Giglio J, et al. Synthesis, in vitro and in vivo characterization of two novel 68Ga-labelled 5-nitroimidazole derivatives as potential agents for imaging hypoxia[J]. Nuclear Medicine & Biology, 2013, 40: 273-279.
[55]Percipalle M, Giardina G, Lipari L, et al. Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells[J]. Nuclear Medicine & Biology, 2010, 37: 893-902.
[56]Shetty D, Jeong J M, Ju C H, et al. Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography[J]. Bioorganic & Medicinal Chemistry, 2010, 18: 7338-7347.
[57]Burchardt C, Riss P J, Zoller F, et al. [68Ga]Ga-DO(2)A-(OBu-l-tyr)(2): synthesis, 68Ga-radiolabeling and in vitro studies of a novel 68Ga-DO(2)A-tyrosine conjugate as potential tumor tracer for PET[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19: 3498-3501.
[58]Wu Z, Zha Z, Choi S R, et al. New 68Ga-PhenA bisphosphonates as potential bone imaging agents[J]. Nuclear Medicine & Biology, 2016, 43: 360-371.
[59]Haubner R, Vera D R, Farshchiheydari S, et al. Development of 68Ga-labelled DTPA galactosyl human serum albumin for liver function imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40: 1245-1255.
[60]Haubner R, Schmid A M, Maurer A, et al. [68Ga]NOTA-galactosyl human serum albumin: a tracer for liver function imaging with improved stability[J]. Molecular Imaging & Biology, 2017: 1-8.
[61]Tolmachev V, Velikyan I, Sandstrm M, et al. A HER2-binding affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37: 1356-1367.
[62]Lee Y K, Jeong J M, Hoigebazar L, et al. Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging[J]. Journal of Nuclear Medicine, 2012, 53: 1462-1470.
[63]Frigell J, García I, Gómezvallejo V, et al. 68Ga-labeled gold glyconanoparticles for exploring blood–brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation[J]. Journal of the American Chemical Society, 2014, 136: 449-457. |