[1]http:∥www.world-nuclear.org/information-library/non-power-nuclear-applications/radiois-otopesresearch/radioisotopes-in-medicine.aspx, Updated December 2017[M].
[2]中华医学会核医学分会. 2016年全国核医学现状普查结果简报[J]. 中华核医学与分子影像杂志,2016,(5):479-480.Chinese Society of Nuclear Medicine. A brief report on the results of the national survey of nuclear medicine in 2016[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2016, 5: 479-480(in Chinese).
[3]Jurisson S S, Lydon J D. Potential technetium Small molecule radiopharmaceuticals[J]. Chem Rev, 1999, 99(9): 2205-2218.
[4]Juergens S, Herrmann W A, Kuehn F E. Rhenium and technetium based radiopharmaceuticals: Development and recent advances[J]. Journal of Organometallic Chemistry, 2014, 751: 83-89.
[5]Vera D R, Wallace A M, Hoh C K, et al. A synthetic macromolecule for sentinel node detection: 99mTc-DTPA-mannosyl-dextran[J]. J Nucl Med, 2001, 42(6): 951-959.
[6]International Atomic Energy Agency, Radiopharmaceuticals for Sentinel lymph node detection: status and trends[C]. Vienna: International Atomic Energy Agency, 2015.
[7]张现忠,杨文江,王学斌,等. 一种用于制备锝-99m标记的GSA的药盒及其制备方法:中国,CN200810057222.1[P]. 2008-01-30.
[8]Molecular Insight Pharmaceuticals, Inc. Study to Evaluate 99mTc-MIP-1404 SPECT/CT Imaging in Men With Biopsy Proven Low-Grade Prostate Cancer (prospect-AS)[DB]. ClinicalTrials.gov Identifier: NCT02615067, 2018.
[9]Cyclomedica Australia PTY Limited. A Comparison of technegas and Xenon-133 planar lung imaging in subjects referred for ventilation scintigraphy[DB]. ClinicalTrials.gov Identifier: NCT03054870, 2018.
[10]Universidade Federal do Rio de Janeiro. 99mTc-anti-TNF-alpha scintigraphy in the evaluation of inflammatory processes activity[DB]. ClinicalTrials.gov Identifier: NCT02134613, 2016.
[11]Advanced Accelerator Applications. 99mTc-rhAnnexin V-128 in diagnosis of spondyloarthritis[DB]. ClinicalTrials.gov Identifier: NCT03232580, 2017.
[12]Advanced Accelerator Applications. 99mTc-rhAnnexin V-128 imaging and cardiotoxicity in Patients with early breast cancer[DB]. Clinical Trials.gov Identifier: NCT02677714, 2017.
[13]Institut National de la Santé Et de la Recherche Médicale, France. Assessment of radiolabeled rhAnnexin V-128 in infective endocarditis (AnnIE)[DB]. ClinicalTrials.gov Identifier: NCT02459613, 2016.
[14]Advanced Accelerator Applications. 99mTc-rhAnnexin V-128 imaging for carotid atherosclerosis[DB]. ClinicalTrials.gov Identifier: NCT02667457, 2018.
[15]Assistance Publique -Hpitaux de Paris. Study of tolerance, biodistribution and dosimetry of fucoidan radiolabeled by technetium-99m (NANO-ATHERO)[DB]. ClinicalTrials.gov Identifier: NCT03422055, 2018.
[16]Cell>Point LLC. Efficacy and saftey study of 99mTc-ECDG in the evaluation of coronary artery disease (CAD)[DB]. ClinicalTrials.gov Identifier: NCT01899833, 2017.
[17]Cell>Point LLC. A Phase 3 Study of 99mTc-EC-DG SPECT/CT Versus PET/CT in Lung Cancer[DB]. ClinicalTrials.gov Identifier: NCT01394679, 2017.
[18]University of Chicago. Feasibility of Imaging in the treatment of patients with advanced head and neck cancer[DB]. ClinicalTrials.gov Identifier: NCT01359267, 2017.
[19]Wolfson Medical Center. Trodat 1 SPECT and dopamine polymorphism[DB]. ClinicalTrials.gov Identifier: NCT01381302, 2016.
[20]Peking Union Medical College Hospital. 99mTc-3PRGD2 SPECT/CT in lung cancer patients (TcRGDLC)[DB]. ClinicalTrials.gov Identifier: NCT01737112, 2017.
[21]First Affiliated Hospital of Fujian Medical University. 99mTc-3PRGD2 SPECT/CT in breast cancer patients[DB]. ClinicalTrials.gov Identifier: NCT02742168, 2016.
[22]First Affiliated Hospital of Fujian Medical university. 99mTc-3PRGD2 SPECT/CT in esophagus cancer patients[DB]. ClinicalTrials.gov Identifier: NCT02744729, 2016.
[23]First Affiliated Hospital of Fujian Medical University. 99mTc-3PRGD2 SPECT/CT in rheumatoid arthritis patients (TRGDRA)[DB]. ClinicalTrials.gov Identifier: NCT02723760, 2016.
[24]Michael O’Connor. Detection of Aggressive Breast Tumors Using Tc-99m-NC100692[DB]. ClinicalTrials.gov Identifier: NCT00888589, 2014.
[25]Endocyte. Folic Acid-Tubulysin Conjugate EC1456 In Patients With Advanced Solid Tumors[DB]. ClinicalTrials.gov Identifier: NCT01999738, 2018.
[26]Endocyte. An Exploratory Study of the Folic Acid-tubulysin conjugate EC1456 in ovarian cancer subjects undergoing surgery[DB]. ClinicalTrials.gov Identifier: NCT03011320, 2018.
[27]Ghosh A, Heston W D W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer[J]. J Cell Biochem, 2004, 91(3): 528-539.
[28]Silver D A, Pellicer I, Fair W R, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues[J]. Clin Cancer Res, 1997, 3(1): 81-85.
[29]Perner S, Hofer M D, Kim R, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression[J]. Hum Pathol, 2007, 38(5): 696-701.
[30]Afshar-Oromieh A, Babich J W, Kratochwil C, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer[J]. J Nucl Med, 2016, 57(Suppl 3): 79S-89S.
[31]Virgolini I, Decristoforo C, Uprimny C, et al. Current status of theranostics in prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3): 471-495.
[32]Hillier S M, Maresca K P, Lu G, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer[J]. J Nucl Med, 2013, 54(8): 1369-1376.
[33]Vallabhajosula S, Nikolopoulou A, Babich J W, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer[J]. J Nucl Med, 2014, 55(11): 1791-1798.
[34]Schmidkonz C, Hollweg C, Beck M, et al. 99mTc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer[J]. Prostate (Hoboken, NJ, U S), 2018, 78(1): 54-63.
[35]Santos-Cuevas C, Davanzo J, FerroFlores G, et al. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients[J]. Nucl Med Biol, 2017, 52: 1-6.
[36]Reff M E, Carner K, Chambers K S, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20[J]. Blood, 1994, 83(2): 435-445.
[37]Li N, Wang X, Lin B, et al. Clinical evaluation of 99mTc-rituximab for sentinel lymph node mapping in breast cancer patients[J]. J Nucl Med, 2016, 57(8): 1214-1220.
[38]Gmeiner S T, Fettich J, Zver S, et al. 99mTc-labelled rituximab, a new non-Hodgkin’s lymphoma imaging agent: first clinical experience[J]. Nucl Med Commun, 2008, 29(12): 1059-1065.
[39]Malviya G, Anzola K L, Podesta E, et al. 99mTc-labeled rituximab for imaging B lymphocyte infiltration in inflammatory autoimmune disease patients[J]. Mol Imaging Biol, 2012, 14(5): 637-646.
[40]Plow E F, Haas T A, Zhang L, et al. Ligand binding to integrins[J]. J Biol Chem, 2000, 275(29): 21785-21788.
[41]Brooks P C, Clark Ra F, Cheresh D A. Requirement of vascular integrin αvβ3 for angiogenesis[J]. Science, 1994, 264(5 158): 569-571.
[42]Jia B, Liu Z, Zhu Z, et al. Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin αvβ3-selective radiotracer 99mTc-3PRGD 2 in non-human primates[J]. Mol Imaging Biol, 2011, 13(4): 730-736.
[43]Cheng G H, Gao S, Ji T F, et al. Pharmacokinetics and radiation dosimetry of Tc-99m 3PRGD2 in healthy individuals: A pilot study[J]. Nuclear Science And Techniques, 2012, 23(6): 349-354.
[44]Zhu Z H, Miao W B, Li Q W, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study[J]. Journal of Nuclear Medicine, 2012, 53(5): 716-722.
[45]Jin X, Liang N, Wang M, et al. Integrin imaging with Tc-99m-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non-small cell lung cancer[J]. Radiology, 2016, 281(3): 958-966.
[46]Yu X, Wu Y, Liu H, et al. Small-animal SPECT/CT of the progression and recovery of rat liver fibrosis by using an integrin αvβ3-targeting radiotracer[J]. Radiology, 2016, 279(2): 502-512.
[47]Huang C, Zheng Q, Miao W B. Study of novel molecular probe Tc-99m-3PRGD(2) in the diagnosis of rheumatoid arthritis[J]. Nuclear Medicine Communications, 2015, 36(12): 1208-1214.
[48]Chen G, Ouyang Z, Wang F, et al. Evaluation of Tc-99m-3PRGD2 integrin receptor imaging in the differential diagnosis of breast lesions and comparison with mammography[J]. Cancer Investigation, 2017, 35(2): 108-115.
[49]Wu Y, Zhang G J, Wang X C, et al. Early detection of rheumatoid arthritis in rats and humans with Tc-99m-3PRGD2 scintigraphy: imaging synovial neoangiogenesis[J]. Oncotarget, 2017, 8(4): 5753-5760.
[50]Zhang Z Q, Zhao X M, Ding C M, et al. Tc-99m-3PRGD2 SPECT/CT imaging for monitoring early response of EGFR-TKIs therapy in patients with advanced-stage lung adenocarcinoma[J]. Cancer Biotherapy And Radiopharmaceuticals, 2016, 31(7): 238-245.
[51]Hua J, Dobrucki L W, Sadeghi M M, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at αvβ3 integrin after murine hindlimb ischemia[J]. Circulation, 2005, 111(24): 3255-3260.
[52]Bach-Gansmo T, Danielsson R, Saracco A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692[J]. J Nucl Med, 2006, 47(9): 1434-1439.
[53]Bach-Gansmo T, Bogsrud T V, Skretting A. Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and 99mTc-labelled NC100692[J]. Clin Physiol Funct Imaging, 2008, 28(4): 235-239.
[54]Axelsson R, Bach-Gansmo T, Castell-Conesa J, et al. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692[J]. Acta Radiol, 2010, 51(1): 40-46.
[55]Gerke V, Moss S E. Annexins: From structure to function[J]. Physiol Rev, 2002, 82(2): 331-371.
[56]Wang X, Feng H, Zhao S, et al. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic[J]. Oncotarget, 2017, 8(12): 20476-20495.
[57]Van De Wiele C, Vermeersch H, Loose D, et al. Radiolabeled annexin-V for monitoring treatment response in oncology[J]. Cancer Biother Radiopharm, 2004, 19(2): 189-194.
[58]Kemerink G J, Boersma H H, Thimister P W, et al. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans[J]. Eur J Nucl Med, 2001, 28(9): 1373-1378.
[59]Kemerink G J, Liem I H, Hofstra L, et al. Patient dosimetry of intravenously administered Tc-99m-annexin V[J]. Journal of Nuclear Medicine, 2001, 42(2): 382-387.
[60]Kartachova M, Van Zandwijk N, Burgers S, et al. Prognostic significance of Tc-99m Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer[J]. Journal of Clinical Oncology, 2007, 25(18): 2534-2539.
[61]Rottey S, Loose D, Vakaet L, et al. 99mTc-HYNIC Annexin-V imaging of tumors and its relationship to response to radiotherapy and/or chemotherapy[J]. Q J Nucl Med Mol Imaging, 2007, 51(2): 182-188.
[62]Rottey S, Van Den Bossche B, Slegers G, et al. Influence of chemotherapy on the biodistribution of Tc-99m hydrazinonicotinamide annexin V in cancer patients[J]. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2009, 53(2): 127-132.
[63]Kemerink G J, Liu X, Kieffer D, et al. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application[J]. J Nucl Med, 2003, 44(6): 947-952.
[64]Blankenberg F G, Katsikis P D, Tait J F, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death[J]. Proc Natl Acad Sci USA, 1998, 95(11): 6349-6354.
[65]Stratton J R, Dewhurst T A, Kasina S, et al. Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi[J]. Circulation, 1995, 92(10): 3113-3121.
[66]Hilgenbrink A R, Low P S. Folate receptor-mediated drug targeting: from therapeutics to diagnostics[J]. J Pharm Sci, 2005, 94(10): 2135-2146.
[67]Leamon C P, Parker M A, Vlahov I R, et al. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical[J]. Bioconjugate Chem, 2002, 13(6): 1200-1210.
[68]Fisher R E, Siegel B A, Edell S L, et al. Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors[J]. J Nucl Med, 2008, 49(6): 899-906.
[69]Naumann R W, Coleman R L, Burger R A, et al. PRECEDENT: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer[J]. J Clin Oncol, 2013, 31(35): 4400-4406.
[70]Herzog T J, Kutarska E, Bidzinsk M, et al. Adverse event profile by folate receptor status for vintafolide and pegylated liposomal doxorubicin in combination, versus pegylated liposomal doxorubicin alone, in platinum-resistant ovarian cancer: exploratory analysis of the phase Ⅱ PRECEDENT trial[J]. Int J Gynecol Cancer, 2016, 26(9): 1580-1585.
[71]Yamada Y, Nakatani H, Yanaihara H, et al. Phase I clinical trial of 99mTc-etarfolatide, an imaging agent for folate receptor in healthy Japanese adults[J]. Ann Nucl Med, 2015, 29(9): 792-798.
[72]Morris R T, Joyrich R N, Naumann R W, et al. Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide)[J]. Ann Oncol, 2014, 25(4): 852-858.
[73]European Medicines Agency[EB/OL]. http:∥www.ema.europa.eu/ema(accessed 18 April 2018).
[74]Yang D J, Kim C G, Schechter N R, et al. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents[J]. Radiology, 2003, 226(2): 465-473.
[75]Yang D, Yukihiro M, Yu D-F, et al. Assessment of therapeutic tumor response using 99mTc-ethylenedicysteine-glucosamine[J]. Cancer Biother Radiopharm, 2004, 19(4): 443-456.
[76]Angelides S, El-Mashaleh M, Anagnostou M, et al. The role of 99mTc-labelled glucosamine (99mTc-ECDG) in the evaluation of rheumatic joint disease: a screening experience[J]. Nucl Med Commun, 2014, 35(6): 655-665.
[77]Ginat D T, Westiin C, Chin C T, et al. Pilot study of 99mTc-labeled ethylene dicysteine deoxyglucose SPECT-CT imaging in treatment response evaluation in patients with locally advanced head and neck cancer[J]. Cureus, 2017, 9(4): e1152.
[78]张俊波,张旭冉,甘倩倩,等. 99mTc-标记含异腈的葡萄糖衍生物及制备方法和应用:中国,CN201710451094.8[P]. 2017-10-13.
[79]Hernandez-Valdes D, Alberto R, Jauregui-Haza U. Quantum chemistry calculations of technetium and rhenium compounds with application in radiopharmacy: review[J]. RSC Adv, 2016, 6(108): 107127-107140.
[80]Wang X Y, Wang Y, Liu XQ, et al. The structure, energy and stability of components formed in the preparation of fac-[99mTc(CO)3(H2O)3]+[J]. Phys Chem Chem Phys, 2003, 5(3): 456-460.
[81]Jia H M, Fang D C, Feng Y, et al. The interconversion mechanism between TcO3+ and TcO2+ core of 99mTc-labeled amine-oxime (AO) complexes[J]. Theor Chem Acc, 2008, 121(5-6): 271-278.
[82]Jia H, Ma X, Wang C, et al. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents[J]. Chin Sci Bull, 2002, 47(21): 1786-1791.
[83]Pascu S, Dilworth J. Recent developments in PET and SPECT imaging[J]. J Labelled Compd Radiopharm, 2014, 57(4): 191-194.
[84]Bailey D L, Willowson K P. An evidence-based review of quantitative SPECT imaging and potential clinical applications[J]. J Nucl Med, 2013, 54(1): 83-89.
[85]Mariani G, Bruselli L, Duatti A. Is PET always an advantage versus planar and SPECT imaging?[J]. Eur J Nucl Med Mol Imaging, 2008, 35(8): 1560-1565.
[86]Hutton B F, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation[J]. Clinical and Translational Imaging, 2018, 6(1): 31-45.
[87]Adak S, Bhalla R, Raj K K V, et al. Radiotracers for SPECT imaging: current scenario and future prospects[J]. Radiochim Acta, 2012, 100(2): 95-107.
[88]Srivastava S C. Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven national laboratory[J]. Radiochim Acta, 2011, 99(10): 635-640.
[89]De Rosales R T M, Blower P. Chapter 16 Role of 99mTc in the Development of Rhenium Radiopharmaceuticals[C]∥International Atomic Energy Agency. Thechnetium-99m-Radiopharmaceuticals:Status-and-Trends.IAEA-Radioisotopes and Radiopharmaceuticals. Series No. 1. Vienna: IAEA, 2009: 317-346.
[90]Zhang X, Hou Y, Peng C, et al. Oligoethyleneoxy-modified 99mTc-labeled β-amyloid imaging probes with improved brain pharmacokinetics for single-photon emission computed tomography[J]. J Med Chem, 2018, 61(3): 1330-1339.
[91]Wang X, Li D, Deuther-Conrad W, et al. Novel cyclopentadienyl tricarbonyl 99mTc-complexes containing 1-piperonylpiperazine moiety: potential imaging probes for sigma-1 receptors[J]. J Med Chem, 2014, 57(16): 7113-7125.
[92]Alberto R. Chapter 17 Future Trends in the Development of Technetium Radiopharmaceuticals[C]∥ International Atomic Energy Agency. Thechnetium-99m Radiopharmaceuticals:Status and Trends. IAEA Radioisotopes and Radiopharmaceuticals. Series No.1. Vienna: IAEA, 2009: 347-358.
[93]Li D, Chen Y, Wang X, et al. 99mTc-Cyclopentadienyl tricarbonyl chelate-labeled compounds as selective sigma-2 receptor ligands for tumor imaging[J]. J Med Chem, 2016, 59(3): 934-946. |