[1]Ametamey S M, Honer M, Schubiger P A. Molecular imaging with PET[J]. Chem Rev, 2008, 108(5): 1501-1516.
[2]Small G R, Wells R G, Schindler T, et al. Advances in cardiac SPECT and PET imaging: overcoming the challenges to reduce radiation exposure and improve accuracy[J]. Can J Cardiol, 2013, 29(3): 275-284.
[3]唐刚华. PET药物及其研究现状与进展[J]. 国际放射医学核医学杂志,1999,23(5):193-197.Tang Ganghua. Research and development of PET agents[J]. Journal of Isotopes ,1999, 23(5): 193-197(in Chinese).
[4]Sogbein O O, Galarneau M P, Schindler T H, et al. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease[J]. BioMed Res Int, 2014, 2014(8): 1-24.
[5]谢博洽. 正电子心肌灌注显像剂的临床应用及研究进展[J]. 同位素,2009,22(4):230-236.Xie Boqia. Research progress and clinical applicationof cardiac positron emission tomography perfusion tracers[J]. Journal of Isotopes, 2009, 22(4): 230-236(in Chinese).
[6]Li Y, Zhang W, Wu H, et al. Advanced tracers in PET imaging of cardiovascular disease[J]. Biomed Res Int, 2014, 2014: 504-532.
[7]Ji A Y, Jin Q M, Zhang D J, et al. Novel 18F-lbeled 1-hydroxyanthraquinone derivatives for necrotic myocardium imaging[J]. ACS Med Chem Lett, 2016, 8(2): 191-195.
[8]Madar I, Ravert H T, Du Y, et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium[J]. J Nucl Med, 2006, 47(8): 1359-1366.
[9]Shoup T M, Elmaleh D R, Brownell A L, et al. Evaluation of (4-[18F]-Fluorophenyl) triphenylphosphonimion. A potential myocardial blood flow agent for PET[J]. Mol Imaging Biol, 2011, 13(3): 511-517.
[10]Aydinbelge F N, Sadic M, Korkmaz M. Current status of myocardial perfusion imaging radiopharmaceuticals for SPECT and PET imaging modalities[J]. Int J Res Med Sci, 2016, 5(1): 1-7.
[11]Yang B Y, Jeong J M, Kim Y J,et al. Formulation of 68Ga-BAPEN kit for myocard-ial positron emission tomography imaging and biodistribution study[J]. Nucl Med Biol, 2010, 37(2):149-155.
[12]Thackeray J T, Bankstahl J P, Yong W, et al. Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model[J]. Eur J Nucl Med Mol Imaging, 2015, 42(2): 317-327.
[13]Wu S, Zhu Y, Liu H, et al. In vivo dynamic metabolic changes after transplantation of induced pluripotent stem cells for ischemic injury[J]. J Nucl Med & Mol Imaging, 2016, 57(12): 2012-2015.
[14]Derlin T, Habermann C R, Lengyel Z, et al. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall[J]. J Nucl Med, 2011, 52(12): 1848-1854.
[15]Thackeray J T, Bankstahl J P, Wang Y,et al. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction[J]. Theranostics, 2016, 6(11):1768-1779.
[16]Matter C M, Wyss M T, Meier P, et al. 18F-choline images murine atherosclerotic plaques ex vivo[J]. Arterioscler Thromb Vasc Biol, 2006, 26(3): 584-589.
[17]Laitinen I E, Luoto P, Nagren K, et al. Uptake of 11C-choline in mouse atherosclerotic plaques[J]. JNucl Med, 2010, 51(5): 798-802.
[18]Joshi N V, Vesey A T, Williams M C, et al. 18F-fluoride positron emission tomography for identify cation of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial[J]. Lancet, 2014, 383(9918): 705-713.
[19]张弘,蒋宁一. 心肌乏氧显像及其临床应用[J]. 国际放射医学核医学杂志,2004,28(3):113-117.Zhang Hong, Jiang Ningyi.Myocardial hypoxia imaging and clinical application[J]. Foreign Med Sci. Sec Radiat Med Nucl Med, 2004, 28(3): 113-117(in Chinese).
[20]Mateo J, Izquierdo-Garcia D, Badimon J J, et al. Noninvasive assessment of hypoxia in rabbit advan-ced atherosclerosis using 18F-fluoromisonidazole positron emission tomographic imaging[J]. Circ Car-diovasc Imaging, 2014, 7(2): 312-320.
[21] Zhang T, Das S K, Fels D R, et al. PET with 62Cu ATSM and 62Cu PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions[J]. AJR Am J Roentgenol, 2013, 201(5): 698-706.
[22]Sharma S K. Pet radiopharmaceuticals for personalized medicine[J]. Curr Drug Targets, 2016, 17(999): 1894-1907.
[23]Hu S, Kiesewetter D O, Zhu L, et al. Longitudinal PET imaging of doxorubicin induced cell death with 18F-annexin V[J]. Mol Imaging Biol, 2012, 14(6): 762-770.
[24]Zhao M, Zhu X, Ji S, et al. 99mTc-Labeled C2A domain of synaptotagmin I as a target-specific Mo-lecular probe for noninvasive imaging of acute myocardial infarction[J]. J Nucl Med, 2006, 47(8): 1367-1374.
[25]Schellenberger E A, Reynolds F, Weissleder R, et al. Surface-functionalized nanoparticle library yields probes for apoptotic cells[J]. Chembiochem, 2004, 5(3): 275-279.
[26]Madar I, Huang Y, Ravert H,et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F fluorobenzyl triphenyl phosphonium[J]. J Nucl Med, 2009,50(5): 774-780.
[27]Höglund J, Shirvan A, Antoni G, et al. 18F-ML-10, a PET tracer for apoptosis: first human study[J]. J Nucl Med, 2011, 52(5): 720-725.
[28]付占立,王荣福. 心脏神经显像[J]. 中华核医学与分子影杂志,2005,25(5):314-317.Fu ZhanLi ,Wang RongFu. Cardiac neurological imaging[J] . Chin J Nucl Med, 2005, 25(5): 314-317(in Chinese).
[29]Zhang H, Huang R, Pillarsetty N V, et al. Synthesis and evaluation of [18F]-Fluorine-labeled benzyl-guanidine analogs for targeting the human norepinephrine transporter[J]. Eur J Nucl Med Mol Imaging, 2014, 41(2): 322.
[30]Li S T, Holmes C, Kopin I J, et al. Aging-related changes in cardiac sympathetic function in humans, assessed by 6-18F-fluorodopamine PET scanning[J]. J Nuc Med, 2003, 44(10): 1599-1603.
[31]Jung Y W, Jang K S, Gu G, et al. [18F]Fluoro-Hydroxyphenethylguanidines: efficient synthesis and comparison of two structural isomers as radiotracers of cardiac sympathetic innervation[J]. ACS Chem Neurosci, 2017, Mar 27. [Epub ahead of print] doi: 10.1021/acschemneuro.7b00051.
[32]Gaertner F C, Wiedemann T, Yousefi B H, et al. Preclinical evaluation of 18F-LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model[J]. J Nucl Med,2013, 54(12): 2111.
[33]Park-Holohan S J, Asselin M C, Turton D R, et al. Quantification of [11C]GB67 binding to cardiacalphal-adrenoceptors with positron emission tomography: validation in pigs[J]. Eur J Nucl Med Mol Imaging, 2008, 35(9): 1624-1635.
[34]Hendrikx G, Vöö S, Bauwens M, et al. SPECT and PET imaging of angiogenesis andarteriogenesis in preclinical models of myocardialischemia and peripheral-vascular disease[J]. Eur J Nucl Med Mol Imaging, 2016, 43(13): 2433-2447.
[35]Makowski M R, Ebersberger U, Nekolla S, et al. In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction[J]. Eur Hear J, 2008, 29(18): 2201.
[36]Van Der Gucht A, Galat A, Rosso J, et al. 18F-NaF PET/CT imaging in cardiac amyloidosis[J]. J Nucl Cardiol, 2016, 23(4): 846-849.
[37]Lee S P, Lee E S, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis[J]. JACC Car-diovasc Imaging, 2015, 8(1): 50-59.
[38]Sarikaya I. Cardiac applications of PET[J]. Nucl Med Commun, 2015, 36(10): 971-985.
[39]Lohrke J, Siebeneicher H, Berger M, et al. 18F-GP1, a novel fluorine-18 labeled tracer designed for PET imaging of thrombi with high detection sensitivity and low background[J]. J Nucl Med & Mol Imaging, 2017, Mar 16. [Epub ahead of print]. doi: 10.2967/jnumed.116.188896.
[40]Garcia J, Tang T, Louie A Y. Nanoparticle-based multimodal PET/MRI probes[J]. Nanomedicine, 2015, 10(8): 1343-1359.
[41]Tu C, Ng T S, Jacobs R E, et al. Multimodality PET/MRI agents targeted to activated macrophages[J]. Journal of Biological Inorganic Chemistry, 2014, 19(2): 247-258.
[42]刘志弢,袁绍华. PET/MRI在心脏核医学中的应用研究[J]. 核电子学与探测技术, 2013,33(3):263-271.Liu Zhitao,Yuan Shaohua. Analysis on the application trends of PET/MRI in nuclear cardiology[J]. Nuclear Electronics & Detection Technology, 2013, 33(3): 263-271(in Chinese).
[43]Torigian D A, Zaidi H, Kwee T C, et al. PET/MR imaging: technical aspects and potential clinical applications[J]. Radiology, 2013, 267(1): 26-44. |