[1]Cooper DS, Doherty GM, Haugen BR, et al. RevisedAmerican Thyroid Association management guidelines for patients with thyroidnodules and differentiated thyroid cancer[J]. Thyroid, 2009, 19(11): 1167-1214. [2]Tharp K, Israel O, Hausmann J, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-upof patients with thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2004,31(10): 1435-1442. [3]Ingui CJ, Shah NP, Oates ME. Endocrine neoplasmscintigraphy: added value of fusing SPECT/CT images compared with traditionalside-by-side analysis[J]. Clin Nucl Med, 2006, 31(11): 665-672. [4]Chen L, Luo Q, Shen Y, et al. Incremental value of 131I-SPECT /CT in the management of patients with differentiated thyroid carcinoma[J].J Nucl Med, 2008, 49(12): 1952-1957. [5]Schmidt D, Szikszai A, Linke R, et al. Impact of 131I-SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at thefirst radioablation[J]. J Nucl Med, 2009, 50(1): 18-23. [6]Kohlfuerst S, Igerc I, Lobnig M, et al.Posttherapeutic (131)I SPECT-CT offers high diagnostic accuracy when thefindings on conventional planar imaging are inconclusive and allows a tailoredpatient treatment regimen[J]. Eur J Nucl Med Mol Imaging, 2009, 36(6): 886-893. [7]Aide N, Heutte N, Rame JP, et al. Clinicalrelevance of single-photon emission computed tomography/computed tomography ofthe neck and thorax in postablation (131)I scintigraphy for thyroid cancer[J].J Clin Endocrinol Metab, 2009, 94(6): 2 075-2084. [8]Grewal RK, Tuttle RM, Fox J, et al. The effect ofposttherapy 131I -SPECT/CT on risk classification and management ofpatients with differentiated thyroid cancer[J]. J Nucl Med, 2010, 51(9): 1361-1367. [9]Liu FT, Rabinovich GA. Galectins as modulators oftumour progression[J]. Nat Rev Cancer, 2005, 5(1): 29-41. [10]Bartolazzi A, Bellotti C, Sciacchitano S.Methodology and technical requirements of the galectin-3 test for thepreoperative characterization of thyroid nodules[J]. Appl Immunohistochem MolMorphol, 2012, 20(1): 2-7. [11]Bartolazzi A, D'Alessandria C, Parisella MG, etal. Thyroid cancer imaging in vivo by targeting the anti-apoptotic moleculegalectin-3[J]. PLoS One, 2008, 3(11): e3768. [12]Haslinghuis LM, Krenning EP, De Herder WW, et al.Somatostatin receptor scintigraphy in the follow-up of patients withdifferentiated thyroid cancer[J]. J Endocrinol Invest, 2001, 24(6): 415-422. [13]Giammarile F, Houzard C, Bournaud C, et al.Diagnostic management of suspected metastatic thyroid carcinoma: clinical valueof octreotide scintigraphy in patients with negative high-dose radioiodinescans[J]. Eur J Endocrinol, 2004, 150(3): 277-283. [14]De Jong M, Valkema R, Jamar F, et al. Somatostatinreceptor-targeted radionuclide therapy of tumors: preclinical and clinicalfindings[J]. Semin Nucl Med, 2002, 32(2): 133-140. [15]Teunissen JJ, Kwekkeboom DJ, Kooij PP, et al.Peptide receptor radionuclide therapy for non-radioiodine-avid differentiatedthyroid carcinoma[J]. J Nucl Med, 2005, 46 Suppl 1:107S-114S. [16]Kim HJ, Kim YH, Lee DS, et al. In vivo imaging offunctional targeting of miR-221 in papillary thyroid carcinoma[J]. J Nucl Med,2008, 49(10): 1686-1693. [17]Joensuu H, Ahonen A. Imaging of metastases ofthyroid carcinoma with fluorine-18 fluorodeoxyglucose[J]. J Nucl Med, 1987,28(5): 910-914. [18]Bertagna F, Bosio G, Biasiotto G, et al. F-18 FDG-PET/CTevaluation of patients with differentiated thyroid cancer with negative I-131total body scan and high thyroglobulin level[J]. Clin Nucl Med, 2009, 34(11):756-761. [19]Freudenberg LS, Frilling A, Kuhl H, et al. Dual-modalityFDG-PET/CT in follow-up of patients with recurrent iodine-negativedifferentiated thyroid cancer[J]. Eur Radiol, 2007, 17(12): 3139-3147. [20]Al-Nahhas A, Khan S, Gogbashian A, et al. Review.18F-FDGPET in the diagnosis and follow-up of thyroid malignancy[J]. In Vivo, 2008,22(1): 109-114. [21]Miller ME, Chen Q, Elashoff D, et al. Positronemission tomography and positron emission tomography-CT evaluation forrecurrent papillary thyroid carcinoma: meta-analysis and literature review[J].Head Neck, 2011, 33(4): 562-565. [22]Dong MJ, Liu ZF, Zhao K, et al. Value of 18F-FDGPET/PET-CT in differentiated thyroid carcinoma with radioiodine negative whole bodyscan: a meta-analysis[J]. Nucl Med Commun, 2009, 30(8): 639-650. [23]Razfar A, Branstetter BFt, Christopoulos A, et al.Clinical usefulness of positron emission tomography-computed tomography inrecurrent thyroid carcinoma[J]. Arch Otolaryngol Head Neck Surg, 2010, 136(2):120-125. [24]Robbins RJ, Wan Q, Grewal RK, et al. Real-timeprognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-Glucose-positronemission tomography scanning[J]. J Clin Endocrinol Metab, 2006, 91(2): 498-505. [25]Yoshio K, Sato S, Okumura Y, et al. The localefficacy of I-131 for F-18 FDG PET positive lesions in patients with recurrentor metastatic thyroid carcinomas[J]. Clin Nucl Med, 2011, 36(2): 113-117. [26]Lowe VJ, Mullan BP, Hay ID, et al. 18F-FDGPET of patients with Hurthle cell carcinoma[J]. J Nucl Med, 2003, 44(9): 1402-1406. [27]Phan HT, Jager PL, Plukker JT, et al. Comparisonof 11C-methionine PET and 18F-fluorodeoxyglucose PET indifferentiated thyroid cancer[J]. Nucl Med Commun, 2008, 29(8): 711-716. [28]Arslan N, Ilgan S, Yuksel D, et al. Comparison ofIn-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection ofmedullary thyroid tumor foci in patients with elevated levels of tumor markersafter surgery[J]. Clin Nucl Med, 2001, 26(8): 683-688. [29]Nock BA, Maina T, Behe M, et al. CCK-2/gastrinreceptor-targeted tumor imaging with (99m)Tc-labeledminigastrin analogs[J]. J Nucl Med, 2005, 46(10): 1727-1736. [30]Gao Z, Biersack HJ, Ezziddin S, et al. The role ofcombined imaging in metastatic medullary thyroid carcinoma: 111In-DTPA-octreotideand 131I /123I-MIBG as predictors for radionuclide therapy[J]. JCancer Res Clin Oncol, 2004, 130(11): 649-656. [31]de Groot JW, Links TP, Jager PL, et al. Impact of 18F-fluoro-2-deoxy-D-Glucosepositron emission tomography (FDG-PET) in patients with biochemicalevidence of recurrent or residual medullary thyroid cancer[J]. Ann Surg Oncol,2004, 11(8): 786-794. [32]Ong SC, Schoder H, Patel SG, et al. Diagnosticaccuracy of 18F-FDG PET in restaging patients with medullary thyroidcarcinoma and elevated calcitonin levels[J]. J Nucl Med, 2007, 48(4): 501-507. [33]Skoura E, Rondogianni P, Alevizaki M, et al. Roleof [(18)F]FDG-PET/CT in the detection of occult recurrent medullary thyroidcancer[J]. Nucl Med Commun, 2010, 31(6): 567-575. [34]Bogsrud TV, Karantanis D, Nathan MA, et al. Theprognostic value of 2-deoxy-2-[18F]fluoro-D-Glucose positronemission tomography in patients with suspected residual or recurrent medullarythyroid carcinoma[J]. Mol Imaging Biol, 2010, 12(5): 547-553. [35]Oudoux A, Salaun PY, Bournaud C, et al.Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucoseand sensitivity of immunoscintigraphy in patients with medullary thyroidcarcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy[J].J Clin Endocrinol Metab, 2007, 92(12): 4590-4597. [36]Hoegerle S, Altehoefer C, Ghanem N, et al.18F-DOPApositron emission tomography for tumour detection in patients with medullarythyroid carcinoma and elevated calcitonin levels[J]. Eur J Nucl Med, 2001,28(1): 64-71. [37]Cengic N, Baker CH, Schutz M, et al. A noveltherapeutic strategy for medullary thyroid cancer based on radioiodine therapyfollowing tissue-specific sodium iodide symporter gene expression[J]. JClin Endocrinol Metab, 2005, 90(8): 4457-4464. [38]Bogsrud TV, Karantanis D, Nathan MA, et al. 18F-FDGPET in the management of patients with anaplastic thyroid carcinoma[J].Thyroid, 2008, 18(7): 713-719. [39]Poisson T, Deandreis D, Leboulleux S, et al. 18F-fluorodeoxyglucosepositron emission tomography and computed tomography in anaplastic thyroidcancer[J]. Eur J Nucl Med Mol Imaging, 2010, 37(12): 2277-2285. [40]Lee YJ, Chung JK, ShinJH, et al. In vitro and in vivo properties of a human anaplastic thyroid carcinomacell line transfected with the sodium iodide symporter gene[J]. Thyroid, 2004,14(11): 889-895. |