[1] 国家环境保护总局. 国家环境保护“十·一五”科技发展规划[R]. 北京:国家环境保护总局,2006. [2] 李兴亮, 李凤鸣, 姜林, 等. 99Mo-99Tcm发生器新型柱填料的研制[J].同位素,2003,16(3-4): 212-214. [3] 贺佑丰. 美国同位素生产和应用[J].同位素,2006,19(2): 107-111. [4] Todd TA, Batcheller TA, Law JD, et al. Cesium and strontium separation technologies literature review, INEEL/EXT-04-01895[R/OL]. http: //www.gov/tethnicial-Publications/Documents/2609963.pdf: Idaho National Engineering and Environmental labtoratory, 2004. [5] Ache HJ, Baetsle LH, Vush R, et al. Feasibility of separation and utilization of cesium and strontium from high level liquid waste[R]. Vienna: International Atomic Energy Agency, 1993. [6] Dozol JF, Dozol M, Macias RM. Extraction of s-trontium and cesium by dicarbollides, crown ethers and functionalized calixarenes[J]. J Incl Phenom Macro, 2000, 38: 1-22. [7] Pedersen CJ. Cyclic polyethers and their complexes with metal salts[J]. J Am Chem Soc, 1967, 89 (26): 7 017-7 036. [8] McDowell WJ, Moyer BA, Case GN, et al. Selectivity in solvent extraction of metal ions by organtic cation exchangers snergized by macrocycles: factors relating to macrocycle size and structure[J]. Solvent Ext Ion Exc, 1986, 4(2): 217-236. [9] Horwitz EP, Dietz ML, Fisher DE. Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-6 and its derivatives[J].Solvent Ext Ion Exc, 1990, 8(4-5): 557-572. [10] Law JD, Herbst RS, Meikrantz DH, et al. Development of technologies for the simultaneous separation of cesium and strontium from spent nuclear fuel as part of an advanced fuel cyc, INL/CON-05-00087[R/OL]. http://www.inl.gov/technicalpubications/Documents/3169895.pdf: Idaho National Laboratory, 2005. [11] Wood DJ, Tranter TJ, Todd TA. Effect of the interference of alkali and alkaline earth metal ions on the extraction 90Sr from acidic nuclear waste solutions by 18-crown-6 derivatives in 1-octanol[J]. Solvent Extr Ion Exc, 1995, 13(5): 829-844. [12] Wood DJ, Law JD, Tullock PA. Extraction of lead and strontium from hazardous waste stream by solvent extraction with 4’,4’(5’)-Di-(T-butylcyclohexano)-18-crown-6[J]. Solvent Extr Ion Exc, 1997, 15(1): 65-78. [13] Law JD, Wood DJ, Herbst RS. Development and testing of SREX flowsheets for treatment of idaho chemical processing plant sodium-bearing waste using centrifugal contactors[J]. Sep Sci Technol, 1997, 32(1-4): 223-240. [14] Izatt RM, Lamb JD, Hawkins RT, et al., Selective M+-H+ coupled transport through a liquid membrane by macrocyclic calixarene ligands[J]. J Am Chem Soc, 1983, 105: 1 782-1 785. [15] Izatt SR, Hawkins RT, Christensen JJ, et al., Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers[J]. J Am Chem Soc, 1985, 107: 63-66. [16] Moyer BA, Bazelaire E, Bonnesen PV, et al. Next generation extractants for cesium separation from high-level waste: from fundamental concepts to site implementation[R/OL]. http://www.ostigov/em52/2005projsum/73803.pdf: Environmental Management Science Program, Project 73803 FY2005 Annual Report, 2005. [17] Delmau LH, Bonnesen PV, Engle NL, et al. Combined extraction of cesium and strontium from alkaline nitrate solutions[J]. Solvent Extr Ion Exc, 2006, 24: 197-217. [18] Moyer BA, Birdwell JF Jr, Bonnesen PV. Use of macrocycles in nuclear-waste cleanup: a real-world application of a calixcrown in technology for the separation of cesinu[M]// Gole K. Macrocyclic chemistry-current trents and future. Dordrecht: Spring, 2005: 383-405. [19] Delmau LH, Haverlock TJ, Bazelaire E, et al. Alternatives to nitric acid stripping in the caustic-side solvent extraction (CSSX) process for cesium removal from alkaline high-level waste[J]. Solvent Extr Ion Exc, 2009, 27: 172-198. [20] Moyer BA, Birdwell JF Jr, Delmau CH, et al. Caustic-side solvent-extraction modeling for hanford interim pretreatment system, ORNL/TM-2008/073[R/OL]. http://www.osti.gov//bridge/servletypurl/951061-XPH59Y/951061.pdf, 2008. [21] Birdwell JF Jr, Counce RM, Slater CO, et al. Conceptual design of a simplified skid-mounted caustic-side solvent extraction process for removal of cesium from savanah river site high-level waste, ORNL/TM-2004/59[R/OL]. http://www.oml.gov/~webworks/cppr/y2004/rpt/119888.pdf, 2004. [22] Birdwell JF Jr, Anderson KK. Evaluation of mass transfer performance for caustic-side solvent extraction of cesium in a conventional 5-cm centrifugal contactor, ORNL/TM-2001/278[R/OL]. http://www.oml.gov/~webworks/cppr/y2001/rpt/112642.pdf, 2002.
[23] Delmau LH, Haverlock TJ, Sloop FV Jr., et al. Caustic side solvent extraction: prediction of cesiumextraction from actual waste and actual waste simulants, ORNL/TM-2003/011[R/OL]. http://www.oml.gov/sci/csd/pdfs/cs-TM2004-01 1.pdf, 2003. [24] 李兴亮,苏哲,冯苗,等. 网状结构[NH4]2·[In(OH)(PO4)(H2O)]2的离子热合成与表征[J].化学应用与研究,2008,20(3): 276-280. [25] Rogers RD, Seddon KR. Ionic liquids-solvents of the future[J]. Science, 2003, 302:792-793. [26] Dai S, Ju YH, Barnes CE. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. J Chem Soc Dalton Trans, 1999, 1 201-1 202. [27] Visser AE, Swatloski RP, Reichert WM, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Ind Eng Chem Res, 2000, 39, 3 596-3 604. [28] Chun S, Dzyuba SV, Bartsch RA. Influence of Structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether[J]. Anal Chem, 2001, 73: 3 737-3 741. [29] Luo H, Dai S, Buchanan PV, et al. Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids[J]. Anal Chem, 2004, 76: 3 078-3 083. [30] Dietz ML. Ionic liquids as extraction solvents: where do we stand?[J]. Sep Sci Technol, 2006, 41: 2 047-2 063. [31] Jensen MP, Nuefeind J, Beitz JV, et al. Mechanisms of metal ion transfer into room-temperature ionic liquids: role of anion exchange[J]. J Am Chem Soc, 2003, 125: 15 466. [32] Dietz ML, Dzielawa JA. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid-liquid extraction [J]. Chem Commun, 2001:2 124. [33] Jensen MP, Dzielawa JA, Ricket P, et al. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid[J]. J Am Chem Soc, 2002, 124: 10 664. [34] Berthon L, Nikitenko SI, Bisel I, et al. Influence of gamma irradiation on hydrophobic room-temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N[J]. Dalton Trans, 2006: 2 526-2 534.[35] Qi M, Wu G, Chen S, et al. Gamma radiolysis of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Radiat Res, 2007, 167(5):508-514. [36] Wai CM, Kulyako Y, Yak HK, et al. Selective extraction of strontium with supercritical fluid carbon dioxide[J]. Chem Commun, 1999: 2 533-2 534. [37] Shadrin A, Murzin A, Lumpov A, et al. The Possibility of Reprocessing of Spent Nuclear Fuel Using Supercritical Fluids[J]. Solvent Extr Ion Exc, 2008, 26: 797-806. [38] Vayssiere P, Wipff G. Importance of counter-ions in alkali and alkaline-earth cation extraction by 18-crown-6: molecular dynamics studies at the water/sc-CO2 interface[J]. Phys Chem Chem Phy, 2003, 5: 2 842-2 850. [39] Sugiyamma W, Yamamura T, Park KC, et al. Recovery of radioactivity as solids from nonflammable organic low-level radioactive wastes using supercritical water mixed with RuO2 [J]. J Supercrit Fluids, 2005, 35: 240-246. [40] Clearfield A, Tripathi A, Medvedev D, et al. In situ type study of hydrothermally prepared titanates and silicotitanates[J]. J Mater Sci, 2006, 41: 1 325-1 333. [41] Tripathi A, Medvedev D, Nyman M, et al. Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology[J]. J Solid State Chem, 2003, 175: 72-83. [42] Tripathi A, Medvedev DG, Clearfield A. The crystal structures of strontium exchanged sodium titanosilicates in relation to selectivity for nuclear waste treatment[J]. J Solid State Chem, 2005, 178: 253-261. [43] Manos MJ, Ding N, Kanatzidis MG. Layered metal sulfides: exceptionally selective agents for radioactive strontium removal[J]. PNAS, 2008, 105: 3 696-3 699. [44] Manolis JM, Konstantinos C, Mercouri GK. Unique pore selectivity for Cs+ and exceptionally High NH+4 exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17][J]. J Am Chem Soc, 2006, 128: 8 875-8 883. [45] Feng M, Kong D, Xie Z, et al.Three-dimensional chiral microporous germanium antimony sulfide with ion-exchange properties[J]. Angew Chem Int Ed, 2008, 47: 8 623-8 626. [46] 兰鹰,苏哲,李兴亮,等. 多孔晶态硫化铟的合成、表征及铯离子交换性能研究[J].化学研究与应用,2006,18(2):129-131. [47] Lan Y, Su Z, Li Xi, et al. Synthesis of a new microporous indium sulphide and its capabilities to the separation of strontium[J]. J Radio Nuc Chem, 2007, 1 077-1 078. [48] Su Zhe, Li X, Lan Y, et al. A new chalcogenide ion exchanging material: porous indium sulfide built from condensed [In10S18]6-T3 supertetrahedral clusters[J]. Materials Letter, 2008, 62: 2 802-2 805. [49] Tripp J, Garn T, Boardman R, et al. Development of stenm reforming for the solidification of the cesium and strontium separations product from advanced aqueous reprocessing of spent nuclear fuel[J]. Sep Sci Technol, 2006, 41: 2 147-2 162. [50] Jantzen CM. Engineering study of the hanford low activity waste (LAW) steam reforming process (U), WSRC-TR-2002-00317[R/OL]. http://www.thortt.com/docs/srstr2002317.pdf, 2002. [51] Olson AL, Soelberg NR, Marshall DW, et al. Fluidized bed steam reforming of hanford lAW using THORsm mineralizing technology, INEEL/EXT-04-02492[R/OL]. http://www.gov/technicalpublications/Documents/3028254.pdf, 2004. [52] Olson AL, Soelberg NR, Marshall DW. Mineralizing, steam reforming treatment of handford low-activity waste, INEEL/CON-05-02596[R/OL]. http://www.inl.gov/technicalpublications/Documents/3169858.pdf, 2005. [53] Landman W, Roesener S, Mason B, et al. Steam reforming application for treatment of DOE sodium bearing tank wastes at idaho national laboratory for Idaho cleanup project[R/OL]. http://www.thortt.com/docs/wm2007, 2007. [54] Landman W, Roesener S, Mason JB, et al. Steam reforming application for treatment of DOE sodium-bearing tank wastes at idaho national laboratory for idaho cleanup project-status report-8499[R/OL]. http://www.thortt.com/docs/wm2008, 2008. [55] Farnan I, Cho H, Weber WJ. Quantification of actinide α-radiation damage in minerals and ceramics[J]. Nature, 2007, 445: 190-193. [56] 高美须, Thayer DW. 137Cs辐照和MAP 综合处理对猪肉中沙门氏菌的影响[J]. 同位素,2000,13(1): 1-6. |